Case Report

DOI: http://dx.doi.org/10.18203/2349-3933.ijam20203609

Hemoglobin E: a potential interferent in measurement of glycated hemoglobin

Shobhit Goel, Preeti Tripathi*, Arijit Sen, Sangeetha Sampath

Department of Laboratory Medicine, Command Hospital Airforce, Bangalore, Karnataka, India

Received: 04 July 2020 Accepted: 30 July 2020

*Correspondence:
Dr. Preeti Tripathi,

E-mail: contactdoctorpreeti@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Glycosylated hemoglobin (HbA1C) is a routinely measured parameter to monitor long term glycemic control in patients with diabetes mellitus. There are many potential interferents which can affect measurement of HbA1C by high performance liquid chromatography (HPLC). Variant hemoglobins, especially, are a common source of confusion and errors in HbA1C measurement. Authors present an interesting case of Hb E variant (undiagnosed hitherto) which came to attention when the machine repeatedly failed to give Hb A1C levels. Hb E is the commonest Hb variant in North East India. In the presence of Hb E, HbA1C may not be detected by ion exchange chromatography as both hemoglobin's co- elute together, thereby causing errors. In such cases, the clinician may resort to subcutaneous sugar monitoring as an alternate or if required, Hb A1C measurement may be done by other techniques like immunoassay technique or boronated affinity chromatography. The laboratory staff and clinicians, both, should be aware of this limitation of HbA1C estimation in patients with HbE and other Hb variants.

Keywords: Glycosylated hemoglobin, Hemoglobin E variant, High performance liquid chromatography, Interference

INTRODUCTION

Glycosylated hemoglobin (HbA1C) is a biochemical marker that is used to monitor the long-term glycemic control in patients of diabetes mellitus.¹ The diabetic control and complication trial (DCCT) and the United Kingdom prospective diabetes study demonstrated the risks for complications are related directly to glycemic control. Hence, HbA1Clevels are also used to assess the risk of developing various complications in this population.² Current American diabetic association guidelines recommend HbA1C <7% as a reasonable goal for diabetic adults on long term follow up of disease. All this makes HbA1C determination becomes an integral part of diabetic care.³

Challenges in glycosylated hemoglobin (HbA1C) estimation-HbA1C estimation by HPLC may be affected

by a variety of genetic, hematologic and disease related factor. Yedla summarizes all the common potential interfering factors in determination of HbA1C as per Table 1 which mainly include hemolytic anemias and drugs. Approximately, 7% of world's population carries an abnormal hemoglobin (Hb) variant, making these variants one of the common and major potential interferent.

This abnormal hemoglobin co-elutes or mask the elution of HbA1C in HPLC technique thereby leading to errors in its measurement. Clinician should bear in mind that the accuracy of several HbA1C methods can be affected adversely by the presence of Hb variants.

Here, authors present a case of a serving soldier, on regular follow-up for diabetes, whose repeated samples were sent for HbA1c measurement and result was given as "not recordable" by the machine every time. This led the laboratory to suspect an underlying interferent which was then pursued and an underlying hemoglobinopathy was revealed.

CASE REPORT

A 49 years old serving soldier, native of Manipur, had been under regular follow up for hypertension, diabetes mellitus and non-alcoholic steatohepatitis for few years. His annual endocrinal review showed patient to be asymptomatic, drug compliant and free of any emerging complications. His general and systemic examination was within normal limits. Basic investigations showed Hb-14.2 g/dl, TLC-6,700/cmm DLC-P58%l 32% M8% E2% platelet count of 220 x 109/l, ESR of 18 mm in first hour, prothrombin time of 12.5 sec, activated prothrombin count of 28 sec. Urine and stool routine examination was within normal limit. Biochemical parameters were also within normal limits with good glycemic control. (sugar fasting - 102 mg/dl post prandial 140 mg/dL - bilirubin- $0.3\ mg/dl$ - AST- $35\ IU/l\ ALT$ - $55\ IU/l\ BUN$ - $11\ mg/dl$ creatinine - 0.85 mg/dl total proteins - 6.68 gm/dl potassium - 3.90 meq/l sodium - 132 meq/l). However, the sample sent for HbA1C could not give values on HPLC machine (D10 BIORAD laboratories, HPLC) run on glycated hemoglobin mode. Suspecting some preanalytical error/ clot in sample, a repeat sample was asked for which again showed Hb A1C to be not recordable. Subsequently, fresh samples of the patient were run on machine on two more occasions which yielded same results. At this point, the patient was called for detailed history and further evaluations. Perusal of documents revealed that though the hemoglobin values were within normal limits, the red cell indices were pointing towards a possible hemoglobinopathy (Hb - 14.2 gm/dl, TRBC - 6.93×106 /microl MCV - 58.6 fL MCH -20.8 pg reticulocyte count - 4.2%). A peripheral smear was examined which showed microcytic hypochromic picture with numerous target cells, relative erythrocytosis and a Mentzer's index of 8.4 strongly suggesting an underlying hemoglobinopathy (Figure 1).

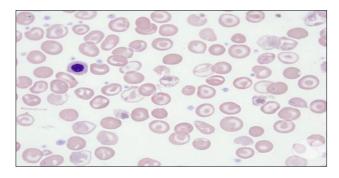


Figure 1: LG stain (40X) microphotograph depicting the classical thalassemia trait PBS features with relative erythrocytosis and microcytic hypochromic red cells. Numerous target cells and an erythroblast can be appreciated in the picture.

Table 1: Genetic, hematologic and disease related factors causing interference in HbA1C.⁴

Factors				
Erythropoiesis	Increased Hb A1C - iron and vit B12 deficiecy			
	Decreased Hb A1C - therapy with haematinics, erythropoietin, chronic			
	liver disease			
Altered Hb	Hemoglobinopathies/Hb F/meth hemoglobin			
Glycation	Increased Hb A1C - alcoholism,			
	kidney disease			
	Decreased Hb A1C - aspirin, vitamin			
	C/E therapy			
Erythrocyte destruction	Increased Hb A1C - increase red cell			
	life span, splenectomy			
	Decreased Hb A1C - decreased red			
	cell life span, splenomegaly drugs			
	like antiretrovirals			
Assay intereference	Increased Hb A1C - increased			
	bilirubin, variant Hb			
	Decreased Hb A1C - variant Hb,			
	increased triglycerides			

Peak name	Calibrated area (%)	Area (%)	Retention time (min)	Peak area
Unknown		0.0	0.98	1013
F	0.2	_	1.07	6584
Unknown	(<u>-</u>	0.7	1.25	19627
P2	1-	2.7	1.35	76646
Unknown	_	0.7	1.52	18463
Unknown	1	2.0	1.74	55348
P3		2.2	1.83	62326
A0	-	63.3	2.42	1778805
A2	24.8*	_	3.72	791409
			Total area:	2,810,221
*Values outside Analysis commo		3	7/5 724	5

Figure 2: HPLC Chromatogram by Automated HPLC analyzer which revealed HbA0 of 63.3%, HbA2 24.8 (s/o presence of heterozygous Hb E) and Hb F of 0.2%.

Based on CBC and PBS findings a Hb HPLC was advised which revealed HbA0 of 63.3%, HbA2 24.8% and HbF of 0.2% (Figure 2). Thereby confirming the presence of asymptomatic Hb E in the patient.

The patient was counselled about the diagnosis and it's implication. The clinician was informed regarding the alternate ways of measuring glycemic control in this patient. Further, his family screening revealed his son also to be carrier of Hb E disease for whom essential counselling was done.

DISCUSSION

Asymptomatic hemoglobinopathies are seen in almost 2-3% of Indian population. Though asymptomatic for the patients, these mild genetic defects carry important implications in patient's life especially at the time of marriage. The most common abnormal hemoglobin encountered in India are Hb S, Hb E, Hb D, Hb J meerut, Hb Q India. The HbE variant is extremely common in South east Asia and in north eastern part of Indian peninsula. B

Hb E basically contains a substitution of lysine for glutamic acid at position 26 of the \beta chain resulting in disorders varying from asymptomatic(heterozygous) to mild disease (homozygous). Subjects with heterozygous E trait are usually asymptomatic hence remain undiagnosed unless investigated specifically for hemoglobinopathies. Hb E interferes with HbA1C levels measured by ion exchange HPLC method, as the mutation tends to alter the ionic charges on the Hb thereby leading to co-elution of HB E along with HbA1C. The machine shows an abnormally high value of Hb A1C (in presence of Hb E) which is abnormally high or sometimes physiologically not possible. Hence, the clinicians should be aware of such interferents and should interpret the results accordingly. In such cases, the clinicians are advised to resort to subcutaneous monitoring of glucose or alternate methods of measuring Hb A1C which might not be affected by presence of abnormal Hb. Immunological methods or boronated affinity chromatography has been found useful in patients with hemoglobin variant. 10 However, since these techniques are not available commonly, subcutaneous implants for glucose measurement are lucrative alternatives for checking of long-term glycemic control.

CONCLUSION

To conclude, it is important to be aware that there are many potential factors which interfere with HbA1C measurement, HB E being one of them. Inappropriate HbA1C measurements in persons with diabetes impacts their treatment and further management. Finally, a repeated flagged result must be pursued in detail to its

final conclusive cause which sometime may reveal an underlying pathology.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, et al. Diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin dependent diabetes mellitus. New Engl J Med. 1993;329:977-86.
- 2. Turner Robert C, Holman Rury R, Cull Carole A, Stratton Irene M, Matthews David R, Valeria F, et al. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Endocrinol. 1999;9(2):149.
- 3. Grant Richard W, Donner Thomas W, Fradkin, Judith E, Hayes, Charlotte, Herrman William H, Hsu WC, et al. Standards of medical care in diabetes-2015: summary of revisions. Diabetes Care. 2015;38:S4.
- 4. Yedla N, Kuchay MS, Mithal A. Hemoglobin E disease and glycosylated hemoglobin. Indian J Endocrinol Metab. 2015;19(5):683-5.
- 5. Nathan DM, Balkau B, Bonora E, Borch-Johnsen K, Buse JB, Colagiuri S, et al. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327-34.
- 6. Kohne E. Hemoglobinopathies: clinical appearances, diagnostic and therapeutic indications. Dtsch Arztebl. 2011;108(31-32):532-40.
- 7. Little RR, Roberts LW. A review of variant hemoglobins interfering with hemoglobin A1c measurement. J Diabetes Sci Technol. 2009;3(3):446-51.
- 8. Vichinsky E. Hemoglobin e-syndromes. Hematol Am Soc Hematol Educ Program. 2007;79-83.
- 9. Musalmah M, Normah J, Mohamad WB, Salwah ON, Fatah HA, Zahari NA. Effect of hemoglobin E on glycosylated hemoglobin determinations using different commercial kits. Med J Malaysia. 2000;55(3):352-6.
- 10. Paisooksantivatana K, Kongsomgan A, Banyatsuppasin W, Khupulsup K. Influence of hemoglobin E on measurement of hemoglobin A1c by immunoassays. Diabetes Res Clin Pract. 2009;83(3):84-5.

Cite this article as: Goel S, Tripathi P, Sen A, Sampath S. Hemoglobin E: a potential interferent in measurement of glycated hemoglobin. Int J Adv Med 2020;7:1423-5.