Original Research Article

Overview of 254 mild cases of COVID-19 in Bangladeshi cohort: a cross-sectional observation

Tahmina Zahan¹, Morshed Nasir¹*, Rawshan Ara Perveen¹, Afzal Akhtar², A. F. M. Mohibur Rahman¹, Nadia Farha¹, A. S. M. Salauddin Chowdhury¹

¹Department of Pharmacology, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
²Department of Medicine, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh

Received: 08 April 2021
Accepted: 27 April 2021

*Correspondence:
Dr. Morshed Nasir,
E-mail: morshednasir@hotmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The first recognition of a cluster of COVID-19 patients in China in late 2019, has become a major concern due to its greater transmissibility and vulnerability of the patient to turn to fever, cough, breathlessness, pneumonia then eventually severe acute respiratory distress syndrome requiring intensive care unit (ICU) support. But most of the affected patients get cured following mild symptoms and very only a few of them get hospitalized. The objective of the study was to observe the demographic characteristics, clinical symptoms, comorbidities, and biomarkers (hematological, inflammatory, hepatic, renal, and metabolic) of mild cases of COVID-19 infected patients admitted to the hospital during the peak four months of the pandemic.

Methods: Age, sex, symptoms, comorbidities, and biomarkers (Hb%, WBC, lymphocyte, neutrophil, platelet count, HCT(hematocrit), NLR(neutrophil-lymphocyte ratio, d-NLR derived neutrophil-lymphocyte ratio, PLR(platelet-lymphocyte-ratio), d-Dimer, ferritin, CRP(C-reactive protein), PT(prothrombin time), INR(international normalized ratio), SGPT, S.creatinine, HbA1C of all rt-PCR positive mild cases were recorded in this retrospective observational study in a tertiary care hospital dedicated to COVID-19 at Dhaka, Bangladesh was done from 15th May to 9th September, 2020. Age, sex, symptoms, and comorbidities were compared by chi-square test and biomarkers were compared by one-way ANOVA.

Results: Out of 254 cases 44 were female and 210 were male with a ratio of 1:4.77. Average age was 39.04. Largest population belongs to the 30-39 years of age range. Among the symptoms, anorexia (18.5%), fever (17.71%), and anosmia (16.9%) were most prevalent symptoms among the mild cases. However, diabetes mellitus (DM) and hypertension (HTN) were predominant comorbidities. Mostly all the biomarkers were significant among groups (Hb%, Total WBC, neutrophil count, platelet count, HCT, NLR, d-NLR, d-Dimer, ferritin, CRP, PT, SGPT, creatinine, HbA1C except lymphocyte count, PLR, and INR. The severity of disease progression depends on the co-morbidity and hyperresponsiveness inflammatory or immunological biomarkers to predict.

Conclusions: In mild cases of COVID-19 male predominance was more and the most affected group was 30-39 years. They suffered more from anorexia and fever and DM and HTN were common comorbidities. Mostly all the biomarkers were significant. Moreover, further large-scale studies are needed to evaluate the number of mild cases and their prognostic features to develop and modify the treatment strategy and public health awareness time to time.

Keywords: COVID-19, Mild cases, Symptoms, Comorbidities, Biomarkers, Bangladesh
INTRODUCTION

From late December 2019 to the end of February 2020, more than 116 million people have been affected globally with more than 2.6 million died due to the COVID-19 pandemic. This large number of patients shows a case fatality ratio ranging from 0.1% to 25% in different countries, demonstrating that severe acute respiratory syndrome (SARS) corona virus is a virulent and highly contagious disease. Total affected cases and death become exponential and the WHO declared COVID-19 as pandemic on 11th March, 2020. However, the first case was detected on 8th March 2020 in Bangladesh. From then up to 5th March 2021, Bangladesh deals with a total of 549,184 confirmed cases and a death rate of 8441. There may be many more undiagnosed cases due to limited facilities. Bangladesh has the second-highest infected case after India in South-East Asia. The disease can present with the typical presentation of severe acute respiratory illness; fever and respiratory symptoms, cough, and shortness of breath. The virus also manifests severe unusual features like diarrhea, stroke, musculoskeletal or cardiac complications lead to hospitalizations or even death. Therefore, symptoms of the variable region can reflect the consequences of the COVID patients along with mortality as the asymptomatic and mild cases are rising exponentially. Besides the dissemination in public media and press, there is scarcity of published studies particularly focused on mild case of COVID-19 around the globe and in Bangladesh till today. Practically, the clinical syndromes have been categorized into four groups: mild, moderate, severe, and critical. Mild cases show influenza-like illness (ILI), moderate with pneumonia (CRB 65 score 0), severe patient with severe pneumonia, whereas severe pneumonia patients may show severe pneumonia, sepsis, or ARDS, the septic shock which may be regarded as critical. Almost 80% of the infections are self-limiting and hospital admissions may not require them. Around 15% of the patients with comorbidities such as diabetes, heart problems, hypertension, and obesity are prone to develop severe pneumonia. The rest of the 5% reported developing respiratory failure, ARDS, end-organ failure and require ICU support for a long period.

As maximum patients suffer from mild symptoms, they do not require to get hospitalized. The rest of them get admitted to the hospital for proper management. Thus, the maximum of the cases remains undiagnosed and the disease progression is unnoticed. As COVID-19 has no specific treatment, in Bangladesh care was taken to treat the mild symptoms (cough, pyrexia), whereas several medications were initially tried according to National guideline and O2 therapy, high flow nasal cannula (HFNC), non-invasive ventilation (NIV) and ventilator support along with different pharmacotherapy have been given to the critically ill patients. A study on 99 ICU patients reported that instrumental oxygen therapy through HFNC had a better outcome in critical patients than NIV or MV, but never reported in mild cases.

There is no notable pharmacotherapy for mild cases but few cases may turn into moderate cases. The hospital admitted COVID-19 patients who were diagnosed as mild cases, themselves took some self-medication before getting hospitalized (vitamin D, zinc, low molecular weight heparin, azithromycin, ivermectin) that may act as immune-modulators. Though these drugs are prescription-only, they are easily available in Bangladesh due to lack of monitoring and pharmacovigilance. Mild cases have been hospitalized with the reason not to progress to the worst one. Besides having no specific antiviral therapy against SARS-CoV2, the patients whose disease severity progressed towards critical were treated with re-purposeful drugs like favipiravir or remisdivir around the world and to some extent in Bangladesh. In a study, out of 473 patients, 80 moderate cases out of 82 and 27 critical cases out of 99 got favipiravir; and 85 critical cases out of 99 got remdisivir in tertiary care hospital in Bangladesh.

In this retrospective cross-sectional study, the place and population were considered as COVID-dedicated hospitals in Dhaka, Bangladesh; conducted from May 2020 to September 2020 which was the pick of pandemic in our country. The objective of the descriptive study was to overview the demographic characteristics, symptoms, comorbidities, and significant biomarkers (hematological, inflammatory, hepatic, renal, and metabolic) with different age groups and sex during the four months.

METHODS

This cross-sectional retrospective descriptive study was done in mild cases of COVID-19 admitted in Holy Family Red Crescent Medical College Hospital (HFRCMCH), from May 17 to September 9, 2020. The HFRCMCH was a 720 bed foremost non-government hospital with 9 bed ICU selected as ‘COVID-dedicated’ by the Government of Bangladesh for four months.

Total 254 mild cases of COVID-19 patients (confirmed by rt-PCR from the nasopharyngeal swab) who were admitted to the Holy Family Red Crescent Medical College Hospital, Dhaka during the study period of the peak of pandemic in Bangladesh were included in the study and moderate, severe, and critical COVID-19 patients were excluded according to national guidelines.

The study was approved by the designated hospital authority and institutional ethics board. The mild cases were categorized into five age groups. Demographic characteristics, symptoms, comorbidities, and biomarkers associated with clinical progression of the disease were recorded in a pre-formed data sheet. Chi-square and one-way ANOVA test was done by using SPSS version 26.0. All p values were two-tailed, with p<0.05 considered statistically significant with a 95% confidence interval.
RESULTS

Demographic characteristics

Out of 254 cases, 210 were male and 44 were female with 1:4.77 with the age range of 18 to 76 years. Average age was 39.04 years. The highest percentage of patients belonged to 30-39 years of age (Table 1). The male: female was significant (p=0.000941).

Clinical characteristics and co-morbidities

Regarding respiratory symptoms, fever (17.71%), cough (14.96%), and breathlessness (14.17%) topped the list (Table 2). Fever and cough were more prominent in the 30-39-years age group, breathlessness was more frequently reported among the 50-59-years age group. Whereas, anorexia (18.5%) and anosmia (16.9%) were the two most important neurological symptoms; myalgia (5.12%) and weakness (2.36%) was less (Table 2). Anorexia was more prevalent in the 30-39-years group and anosmia was more in the 40-49-years age group. Another symptom was diarrhea (4.3%) not shown in the table. Respiratory and neurological symptoms among the different age group were not statistically significant (p=0.713).

The common comorbidities among the mild cases of COVID-19 were diabetes mellitus (22.44%) and hypertension (16.92%). The other comorbidities were IHD (4.33%), bronchial asthma (3.15%), and CKD (1.96%). DM and HTN were more in the 40-49-years age group. On the other hand, IHD was prevalent in the >60-years age group (Table 3).

REGARDING hematological parameters, Hb% was highly significant among different groups which were highest in the 30-39-years and lowest in the >60-years age group. Total WBC count was highest in >60-years whereas lowest in <30-years age group, that was significant among groups. Whereas, the neutrophil count was very significant among groups which was highest in >60-years and lowest in 30-39-years age group. Platelet count was highly significant among groups that was highest in the 50-59-years and lowest in the >60-years age group. On the other hand, HCT count was highest in the 30-39-years and lowest in the >60-years age group, HCT was significant among groups. NLR was very significant which were highest in >60-years and lowest in 50-59-years age group. d-NLR was also significant that were highest in the 50-59-years and lowest in the >30-years age group. Lymphocyte count and PLR was not significant (Table 4). Regarding inflammatory parameters, d-Dimer was highest in the 30-39-years group and lowest in the 50-59-years group, was significant among groups. Ferritin was significantly higher between the group that was highest in >60-years and lowest in >30-years group. CRP was very significant among the group that was highest in >60-years and lowest in the >30-years group. Prothrombin time (PT) was significantly high among the 50-59-years and low in >30-years group. On the other hand, SGPT was significant among the group that was highest in >60-years and lowest in >30-years group. S.creatinine was significant among the group that was highest in the 50-59-years and lowest in the >60-years group. Whereas, significant difference of HbA1C was found between >60-years and >30-years group. INR was not significant.

Table 1: Age distribution of the mild cases of COVID patients (N=254).

<table>
<thead>
<tr>
<th>Age range (in years)</th>
<th>Total patients</th>
<th>Male Numbers</th>
<th>Percentage (%)</th>
<th>Female Numbers</th>
<th>Percentage (%)</th>
<th>Statistical value</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
<td>75</td>
<td>61</td>
<td>29.04</td>
<td>14</td>
<td>31.8</td>
<td>Chi-square=18.6014, P value=0.000941.</td>
</tr>
<tr>
<td>30-39</td>
<td>120</td>
<td>110</td>
<td>52.38</td>
<td>10</td>
<td>22.72</td>
<td>The result is significant at p<0.05</td>
</tr>
<tr>
<td>40-49</td>
<td>38</td>
<td>26</td>
<td>12.4</td>
<td>12</td>
<td>27.27</td>
<td>Statistical value</td>
</tr>
<tr>
<td>50-59</td>
<td>5</td>
<td>3</td>
<td>1.42</td>
<td>2</td>
<td>4.13</td>
<td></td>
</tr>
<tr>
<td>60 and above</td>
<td>16</td>
<td>10</td>
<td>4.76</td>
<td>6</td>
<td>13.63</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>254</td>
<td>210</td>
<td>100</td>
<td>44</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Common symptoms in different age range mild group of COVID-19 patients.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Total (N=25) (%)</th>
<th><30 years (N=75) (%)</th>
<th>30-39 years (N=120) (%)</th>
<th>40-49 years (N=38) (%)</th>
<th>50-50 years (N=5) (%)</th>
<th>> 60 years (N=16) (%)</th>
<th>Statistical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>45(17.71)</td>
<td>9(12)</td>
<td>14(11.67)</td>
<td>6(15.79)</td>
<td>2(40)</td>
<td>8(50)</td>
<td>Chi-square=8.8775, P=0.713359.</td>
</tr>
<tr>
<td>Cough</td>
<td>38(14.96)</td>
<td>7(10.33)</td>
<td>13(10.83)</td>
<td>7(18.42)</td>
<td>2(40)</td>
<td>5(31.25)</td>
<td>Result is not significant at p<.05</td>
</tr>
<tr>
<td>Breathlessness</td>
<td>36(14.17)</td>
<td>5(6.67)</td>
<td>8(6.67)</td>
<td>6(15.79)</td>
<td>5(100)</td>
<td>12(75)</td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>47(18.50)</td>
<td>7(9.33)</td>
<td>18(15)</td>
<td>17(44.74)</td>
<td>1(20)</td>
<td>4(25)</td>
<td>Chi-square=20.1649, P=0.064029.</td>
</tr>
<tr>
<td>Anosmia</td>
<td>43(16.9)</td>
<td>1(1.33)</td>
<td>12(10)</td>
<td>25(65.78)</td>
<td>3(60)</td>
<td>2(12.55)</td>
<td>Result is not significant at p<0.05</td>
</tr>
<tr>
<td>Myalgia</td>
<td>13(5.12)</td>
<td>1(1.33)</td>
<td>5(4.17)</td>
<td>2(5.26)</td>
<td>3(60)</td>
<td>2(12.55)</td>
<td></td>
</tr>
<tr>
<td>Weakness</td>
<td>6(2.36)</td>
<td>1(1.33)</td>
<td>2(1.67)</td>
<td>1(2.63)</td>
<td>1(20)</td>
<td>1(6.25)</td>
<td></td>
</tr>
</tbody>
</table>

International Journal of Advances in Medicine | June 2021 | Vol 8 | Issue 6 | Page 737
Table 3: Comorbidities in different age range of mild group.

<table>
<thead>
<tr>
<th>Diseases</th>
<th>Total (N=16) (%)</th>
<th><30 years (N=5) (%)</th>
<th>30-39 years (N=12) (%)</th>
<th>40-49 years (N=3) (%)</th>
<th>50-50 years (N=5) (%)</th>
<th>> 60 years (N=5) (%)</th>
<th>Statistical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>57(22.44)</td>
<td>9(3.33)</td>
<td>10(8.33)</td>
<td>18(47.36)</td>
<td>3(60)</td>
<td>11(68.75)</td>
<td></td>
</tr>
<tr>
<td>HTN</td>
<td>43(16.92)</td>
<td>2(2.67)</td>
<td>6(5)</td>
<td>15(39.47)</td>
<td>3(60)</td>
<td>10(62.5)</td>
<td>Chi-square=10.2972, P=0.050656</td>
</tr>
<tr>
<td>IHD</td>
<td>11(4.33)</td>
<td>1(1.33)</td>
<td>1(0.83)</td>
<td>2(2.56)</td>
<td>1(20)</td>
<td>4(25)</td>
<td>Result is not significant at p<0.05</td>
</tr>
<tr>
<td>Bronchial-asthma</td>
<td>8(3.15)</td>
<td>2(2.67)</td>
<td>3(2.5)</td>
<td>1(2.63)</td>
<td>1(20)</td>
<td>1(6.25)</td>
<td></td>
</tr>
<tr>
<td>CKD</td>
<td>5(1.96)</td>
<td>1(1.33)</td>
<td>1(0.83)</td>
<td>1(2.63)</td>
<td>1(20)</td>
<td>1(6.25)</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Changes of biomarkers in different age range of mild group.

<table>
<thead>
<tr>
<th>Diseases</th>
<th><30 years (N=5)</th>
<th>30-39 years (N=10)</th>
<th>40-49 years (N=3)</th>
<th>50-50 years (N=5)</th>
<th>> 60 years (N=5)</th>
<th>Statistical value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb%</td>
<td>13.56±2.16</td>
<td>14.01±1.06</td>
<td>12.41±2.55</td>
<td>12.96±2.17</td>
<td>11.41±2.07</td>
<td>***</td>
</tr>
<tr>
<td>Total WBC</td>
<td>60.3±2.14</td>
<td>60.3±2.14</td>
<td>60.3±2.14</td>
<td>60.3±2.14</td>
<td>60.3±2.14</td>
<td></td>
</tr>
<tr>
<td>Lymphocyte</td>
<td>47.8±3.14</td>
<td>47.8±3.14</td>
<td>47.8±3.14</td>
<td>47.8±3.14</td>
<td>47.8±3.14</td>
<td></td>
</tr>
<tr>
<td>Neutrophil</td>
<td>42.1±9.92</td>
<td>42.1±9.92</td>
<td>42.1±9.92</td>
<td>42.1±9.92</td>
<td>42.1±9.92</td>
<td></td>
</tr>
<tr>
<td>Platelet count</td>
<td>23.4±6.8</td>
<td>23.4±6.8</td>
<td>23.4±6.8</td>
<td>23.4±6.8</td>
<td>23.4±6.8</td>
<td></td>
</tr>
<tr>
<td>HCT</td>
<td>42.0±9.22</td>
<td>42.0±9.22</td>
<td>42.0±9.22</td>
<td>42.0±9.22</td>
<td>42.0±9.22</td>
<td></td>
</tr>
<tr>
<td>NLR</td>
<td>1.5±1.15</td>
<td>1.5±1.15</td>
<td>1.5±1.15</td>
<td>1.5±1.15</td>
<td>1.5±1.15</td>
<td></td>
</tr>
<tr>
<td>d-NLR</td>
<td>0.019±0.015</td>
<td>0.019±0.015</td>
<td>0.019±0.015</td>
<td>0.019±0.015</td>
<td>0.019±0.015</td>
<td></td>
</tr>
<tr>
<td>PLR</td>
<td>99.77±15.89</td>
<td>99.77±15.89</td>
<td>99.77±15.89</td>
<td>99.77±15.89</td>
<td>99.77±15.89</td>
<td></td>
</tr>
<tr>
<td>d-Dimer</td>
<td>0.05±0.07</td>
<td>0.05±0.07</td>
<td>0.05±0.07</td>
<td>0.05±0.07</td>
<td>0.05±0.07</td>
<td></td>
</tr>
<tr>
<td>Ferritin</td>
<td>173.8±171.7</td>
<td>260.9±248.69</td>
<td>238.4±298.06</td>
<td>243.2±222.15</td>
<td>554.1±451.59</td>
<td>**</td>
</tr>
<tr>
<td>CRP</td>
<td>0.82±2.62</td>
<td>1.85±3.03</td>
<td>1.85±3.03</td>
<td>1.85±3.03</td>
<td>1.85±3.03</td>
<td>**</td>
</tr>
<tr>
<td>PT</td>
<td>10.61±5.95</td>
<td>11.4±5.34</td>
<td>10.2±4.51</td>
<td>13.6±4.58</td>
<td>12.2±6.29</td>
<td>**</td>
</tr>
<tr>
<td>INR</td>
<td>0.81±0.45</td>
<td>0.87±0.41</td>
<td>0.78±058</td>
<td>1.02±0.04</td>
<td>0.93±0.48</td>
<td>ns</td>
</tr>
<tr>
<td>SGPT</td>
<td>49.8±46.58</td>
<td>53.7±38.71</td>
<td>35.8±19.08</td>
<td>37±18.39</td>
<td>47.8±34.44</td>
<td>**</td>
</tr>
<tr>
<td>S. creatinine</td>
<td>0.95±0.34</td>
<td>0.99±0.33</td>
<td>1.08±0.45</td>
<td>1.41±0.76</td>
<td>1.7±1.87</td>
<td>*</td>
</tr>
<tr>
<td>HbA1C</td>
<td>3.04±2.9</td>
<td>3.27±1.17</td>
<td>2.67±3.44</td>
<td>5.68±4.64</td>
<td>2.55±3.19</td>
<td>**</td>
</tr>
</tbody>
</table>

Values are expressed as mean ±SD; Test: One-way ANOVA ; *** high significant at p<0.001; ** significant at p≤ 0.01; * significant at p<0.05, ns= not significant

DISCUSSION

To our knowledge, not many studies have been conducted on mild cases of COVID-19 in Bangladesh. In this study cohort of 254 mild cases of COVID-19 (RT-PCR positive), female was 44 and male were 210 with 1:4.77 ratio, with the age range of 18 to 76 years and the difference was statistically significant (p<0.05). Most of patients belonged to 30-39 years with the mean age of 39.04 years. Similar findings were reported in other studies in Bangladesh where most of the patients were male (82.67%) and some previous studies showed male were more like 77% and 64%. It was suggested that ACE2 is the target receptor for COVID-19 that is greatly stated in males than in females which is present. Presence of X chromosome and sex hormones may play a role for the less chance of getting infected with the virus in female. Young people were more affected probably because they were unwilling to follow the movement restriction by the instruction of govt. in addition to the necessary preventive measures as they believe proper hand washing is enough to protect them from the transmission. Fever (17.71%), cough (14.69%) and breathlessness (14.17%) were the predominant features and prevalent in the 30-39 years. Fever was experienced in 36.4% of cases and breathlessness was compatible with similar studies by Liu et al (11.5%) and Mutair et al (22.4%) respectively. Regarding the neurological symptoms of anorexia (18.5%), anosmia (16.9%) was predominant followed by myalgia (5.12%) and weakness (2.36%) in descending order.
order. Anosmia was more in the 40-49 years age group. Several studies show similar findings. Almost 18.5% cases suffered from anorexia in the present study; and more in the 30-39-years age group; several studies show similar results.

4

Among 254 patients, diabetes and hypertension were more predominant in the 40-49-years age, may be because these
diseases are frequent in the middle-aged population. IHD was more in >60-years age group, as increased age pre-
dispose to IHD. Pre-existing diseases like cardiovascular
disease, COPD, diabetes mellitus, hypertension,
immunosuppression, obesity, and sicken cell disease
prejudice patients to unfavorable conditions and increased
the risk of death. 22.44% of the mild cases was suffering
from diabetes; several studies showed the similar
result. HTN (16.92%) was the 2nd most common
comorbidities after DM which was consistent with several
studies. Only 1.9% patients were suffering from CKD
that corresponds with other studies.

Hb% was lowest in the elderly (>60 years) age group,
maybe since Hb% decreases with aging. In a recent study
it was found that hemoglobin level decreases in disease
progression. However, WBC count was more in elderly
age group which was owing to the age and a study showed
the similar findings and was significant. The neutrophil is
a key constituent of the leukocyte population and migrates
from the venous system to the immune organ. Neutrophil
releases a large amount of reactive O₂ species. Thus
antibody-mediated cell-mediated cell may assassinate
the virus directly expose virus antigen, and excite the cell-
specific and humoral immunities. Neutrophil count was
highest in elderly age group that is comparable to another
study and was significant. The severity of COVID-19 is
linked to lymphopenia. Whereas lymphocyte count was
highest in younger (30-39 years) age group and lowest in
elderly age group and platelet count was highest in
younger age group and was significant. In a similar study
same result was found. Hematocrit (HCT) was high in the
30-39 years and significantly less in the older patients. A
high NLR was concomitant with a more severe outcome in
a similar study. NLR was significant among groups and
highest in patients >60-years group and lowest in <30-
years group that is similar to other study.

The d-NLR was highest in the 50-59 years age group and
lowest in the 30 years age group and statistically
significant among groups. Yang et al show that d-NLR was
3.3 which was unlike the present study. Elevated d-
Dimer suggests extensive thrombin generation and
fibrinolysis along with poor prognosis. d-Dimer was
highest in the 30-39-years group which corresponds to
another study and lowest in the 30-years age group and
was significant among groups. Raised ferritin level has
been regarded as an acute phase reaction parameter and
may have an important role in inflammation regarding the
development of a cytokine storm and it indicates the
disease severity. Ferritin was significant among groups
and highest in>60-years age group and lowest in<30-years
age group. It was suggested that the hospital death rate was
raised if the ferritin level>300 ng/mL. CRP was highest in
the >60 years and lowest in the <30-years group. Unlike
the present study, a retrospective cohort study showed
median CRP was 2.55 mg/L. An elevated CRP is
considered as pointer of ARDS as it represents the sign of
intense inflammation.

PT was highest in >60-years age group which corresponds
to another study and was significant. Elevated SGPT has
more chance to develop in critical COVID-19 and end-
organ damage. SGPT was highest in 30-39-years age
group; lowest in 40-49 years age group that corresponds
to another study. S. creatinine was highest in >60-years age
group which corresponds to another study and lowest
in <30-years age group and statistically significant among
groups. No remarkable findings was observed for INR
and HbA₁C.

CONCLUSION

The novel SARS-CoV-2 virus is still posing challenges to
the world and the mutating strains are causing exponential
rise of morbidity and mortality. Males of middle-age group
are predominantly affected and presents with mild
symptoms and very few comorbidities. But the significant
variations of few biomarkers among the elderly patients
are crucial to predict the progression of disease. Therefore,
epidemiological and demographic differences of clinical
symptoms, comorbidities, and changes of biomarkers in
mild cases are crucial to develop, review and modify the
management strategy and public health awareness time to
time.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the
Institutional Ethics Committee

REFERENCES

int/newroom/commentaries/detail/estimatim-
mortality-from-covid-1. Accessed on 23 March
2021.
https://www.worldometers/info/coronavirus/country /
4. World Health Organization. Coronavirus disease
(COVID-19); Weekly Epidemiological Update, 2020.
https://www.who.int/publications/m/item/weekly-
epidemiological-update-on-covid-19-19-march-
5. Tambe MP, Parande MA, Tapare VS, Borle PS, Lakde RN, et al. An epidemiological study of

