pISSN 2349-3925 | eISSN 2349-3933

Original Research Article

DOI: https://dx.doi.org/10.18203/2349-3933.ijam20211473

Estimation of left ventricular function in chronic alcoholics

K. S. Sindhya, Arthi P. S.*

Department of General Medicine, Sri Sathyasai Medical College and Research Institute, Ammapettai, Chengalpettu District, Tamil Nadu, India

Received: 8 April 2021 Revised: 18 April 2021 Accepted: 19 April 2021

*Correspondence: Dr. Arthi P. S.,

E-mail: dineshragav.1989@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Alcohol abuse is one of the leading causes of millions of deaths, it is also a burden in society. Direct toxicity of ethanol affects cardiac muscle Acute intoxication shows pathological electrocardiogram changes such as sinus tachycardia in alcohol dependence syndrome, sinus arrhythmias, prolongation of QT interval, ventricular polarising complexes, poor progression of R wave, torse de pointes. Changes found in echocardiography are alteration in septal and ventricular wall thickness, left atrial dimensions, left ventricle dimension and mass.

Methods: Patients attending outpatient and inpatients section in our tertiary care hospital Shri Balaji Vidhyapeet University were considered in study for a period of two years. Study size was 85 patients, Data were collected regarding proportion of ethanol intake, history of duration, symptoms related to cardiovascular system, blood parameters including thyroid function test, blood sugars are done, body mass index calculated, blood pressure recorded master chart made for statistical verification. The three-dimensional echocardiography in M mode is done by our cardiologist.

Results: Echocardiography findings were correlated with duration of intake of alcohol end diastolic volume index (EDVI), End systolic volume index (ESVI), Left ventricle mass index (LVMI) had positive correlation of p-value less than 0.05, when quantity of ethanol intake correlated with echocardiography, Left ventricular inner dimension (LVID), fractional shortening (FS), ejection fraction (EF), posterior wall thickness, E/A ratio has no significance with p value. Abnormality is noted in left ventricle diastolic function and is corresponded to quantity and duration of alcohol. Moderate amount of less than 150grams of ethanol did not showed toxic effects in heart while severe quantity and duration more than ten years of intake showed left ventricle dysfunction

Conclusions: Ethanol consumption in massive amount impair cardiac contractile function. Change in left ventricle volume takes place before the defect in the ventricular filling, which would be a marker for effect of ethanol in heart.

Keywords: Alcohol abuse, LV dysfunction, Intoxication

INTRODUCTION

Alcohol abuse is one of the leading causes of millions of death, it is also a burden in society. Many diseases are attributed as a result of alcoholism including most of the system which includes cirrhosis, internal bleeding in gastrointestinal tract, pancreatitis, nutritional deficits, encephalopathy and so on.1 Direct toxicity of ethanol affects cardiac muscle Acute intoxication shows pathological electrocardiogram changes such as sinus tachycardia in alcohol dependence syndrome, sinus arrhythmias, prolongation of QT interval, ventricular polarising complexes, poor progression of R wave, torse de pointes. The presence of torse de pointes usually denotes poor prognosis.2

Early changes in electrocardiogram is left atrial enlargement which can be identified by P wave morpholology in lead V1.3,4 Prolonged intake of ethanol with malnourishment usually shows defects in interventricular conduction. 5.6 Atrial fibrillation in acute intoxication can be reversed in a day with stabilization of hemodynamics. 7 Bradycardia with sinus rhythm usually presents with recurrent syncope resulting from toxic effects of ethanol. Ethanol intoxication is one of the commonest cause of sudden cardiac arrest. 8.9

Changes found in echocardiography are alteration in septal and ventricular wall thickness, left atrial dimensions, left ventricle dimension and mass. 10-12,39-46 Early picking of changes in three-dimensional echocardiography would benefit the patients as toxin induced cardiomyopathy is reversible. 13 The amount of ethanol consumption is proportional to the changes in echocardiography. 14,15

Hence the objective of this study is the correlation, significance of Ethanol consumption with cardiac contractile dysfunction, and to determine the echo finding related to early changes in ventricular dysfunction.

METHODS

Study type

Observational cross-sectional study.

Study population

Selection criteria

Willing and consented Patients attending as outpatient and inpatients in our hospital Shri Sathya Sai Medical College and Research Institute were considered in study for a period of 2 years from January 2018 to December 2020.

Exclusion criteria

They should satisfy age less than sixty years to exclude systemic illness. Duration of ethanol of more than of five years. Average drink of atleast five drinks in a week of more than ninety grams.

It is necessary to exclude valvular heart disease, thyroid diseases, diabetes and systemic hypertension as these pathologies will interfere with atrial and ventricular mass and function.

Study procedure

Data were collected regarding proportion of ethanol intake, history of duration, symptoms related to cardiovascular system, blood parameters including thyroid function test, blood sugars are done, body mass index calculated, blood pressure recorded master chart made for statistical verification.

Echocardiography

The three-dimensional echocardiography in M mode is done by our cardiologist. Internal dimension of left ventricle and ejection fraction is measured, doppler ultrasound scan is used to assess diastolic function of left ventricle, peak early diastolic velocity, peak late diastolic velocity, E/A ratio. Ethical approval obtained.

Statistical analysis

Chi-square test was applied, data were expressed as mean standard deviation. Statistical package for social sciences (SPSS) software 16th version was used for the analysis. P value less than 0.05 was regarded as significant.

RESULTS

Total of 85 cases were included in my study who were satisfying both inclusion and exclusion criteria, of this one third (38.2%) were consuming ethanol of less than ten years and two third (61.8%) more than ten years (Table 1).

Table 1: Duration of alcohol.

Duration of alcohol	Frequency	Percentage
Up to 10 years	33	38.3
10 years above	52	61.8
Total	85	100.0

Table 2: Amount of ethanol.

Amount of ethanol	Frequency	Percentage
150 grams and less	46	52.3
150 grams and more	39	47.7
Total	85	100.0

Of which 52.3% devour less than 150 grams of ethanol, 47.7% more than 150 grams of alcohol

Echocardiography measurements: T test for duration of alcohol

Interpretation of Table 3

Echocardiography findings were correlated with duration of intake of alcohol end diastolic volume index (EDVI), End systolic volume index (ESVI), Left ventricle mass index (LVMI) had positive correlation of p value less than 0.05.

When quantity of ethanol intake correlated with echocardiography, Left ventricular inner dimension (LVID), fractional shortening (FS), ejection fraction (EF), posterior wall thickness, E/A ratio has no significance with p value. There is no abnormal variation in E velocity, A velocity and no difference noted in interventricular septum and posterior wall thickness.

Table 3: Echocardiography measurements: T test for duration of alcohol.

	Duration of alcohol	N	Mean	SD	P value	
Left ventricular inner dimension	1-10 years	55	4.5691	0.33437	0.296	
	>10 years	30	4.4900	0.32521		
End diastolic volume index	1-10 years	55	51.2156	6.20346	0.005 (NS)	
	>10 years	30	47.3283	5.25204		
End systolic volume index	1-10 years	55	15.1360	1.80679	0.001 (NS)	
	>10 years	30	13.8113	1.61938		
Fractional shortening	1-10 years	55	47.3491	54.65109	0.610	
	>10 years	30	42.2000	6.48287		
Ejection fraction	1-10 years	55	73.8182	5.36135	0.468	
	>10 years	30	74.6667	4.67077		
Posterior wall thickness	1-10 years	55	.9545	0.11835	0.013 (NS)	
	>10 years	30	.8867	0.11666		
Inter ventricular septal thickness	1-10 years	55	.9745	0.12941	0.767	
	>10 years	30	.9833	0.13153		
Left ventricular mass index	1-10 years	55	84.7445	11.69503	0.018 (NS)	
	>10 years	30	78.7247	9.40985		
Isovolumetric relaxation time	1-10 years	55	88.7636	13.05397	0.120	
	>10 years	30	84.3000	11.43543		
Deceleration time	1-10 years	55	173.3964	29.69303	0.035(NS)	
	>10 years	30	160.4733	19.26746		
E wave	1-10 years	55	0.7824	0.13944	0.238	
	>10 years	30	0.8217	0.15643		
A wave	1-10 years	55	0.7184	0.17171	0.964	
	>10 years	30	0.7167	0.14547		
E/A ratio	1-10 years	55	1.1389	0.29040	789042310.603	
	>10 years	30	1.1717	0.24885		

NS - Not Significant

Abnormality is noted in left ventricle diastolic function and is corresponded to quantity and duration of alcohol. Moderate amount of less than 150 gms of ethanol did not showed toxic effects in heart while severe quantity and duration more than ten years of intake showed left ventricle dysfunction and most of the patients are without cardiovascular symptoms.

DISCUSSION

Thus ethanol is found have direct toxic effect in heart musculature resulting in alcoholic cardiomyopathy. ¹⁶⁻²⁹ Acetaledehyde, a strong metabolite impairs phosphorylation of mitochondria, The myocyte in toxicated heart are found to have abnormal structure which inturn leading to cardiomyopathy. ^{30,31,34} There are other certain mechanisms which includes inhibition of interaction in calcium myofilament, protein synthesis, reduction in receptor expression. ^{33,35,36} Sinus tachycardia is the most common abnormal change found in electrocardiographic rhythm. ^{32,37}

In our study we have used echocardiography as a study variable. We have subjected each patients to echocardiography and observed that duration of alcoholic beverages is directly proportional to the cardiovascular changes.

We came to the conclusion 61.8% of my cases who had endured ethanol for more than ten years showed low left ventricular function.

Limitations

There is no control in our study, comparison with normal adult is not possible. As the disease is reversible proper follow up could not be done in most cases. No female cases are willing for this study as our topic is related to alcohol.

CONCLUSION

Ethanol consumption in massive amount impair cardiac contractile function. Change in left ventricle volume takes place before the defect in the ventricular filling, which would be a marker for effect of ethanol in heart. Duration of detoxification (abstinence) for three months could reverse the cardiac dysfunction.

ACKNOWLEDGEMENTS

We would like to thank our nursing staff of department of cardiology, our sincere thanks to statistician. We are grateful to all patients included in our study. Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- Regan TJ. Alcohol and the cardiovascular system. JAMA. 1990;264:377-81.
- Spodick DH, Pigott VM, Chirife R. Preclinical cardiac malfunction in chronic alcoholism. N Engl J Med. 1972;287:677-81.
- 3. Arroyo LH, Regan TJ. Ethanol and the heart. In: Topol EJ, editor. Textbook of Cardiovascular Medicine. 1st ed. Philadelphia: Lippincott-Raven. 1998;219-29.
- 4. Askanas A, Udoshi M, Sadjadi SA. The heart in chronic alcoholism: a noninvasive study. Am Heart J. 1980;99:9-16.
- Kino K, Imamitchi H, Morigutchi M, Kawamura K, Takatsu T. Cardiovascular status in asymptomatic alcoholics, with reference to the level of ethanol consumption. Br Heart J. 1981;46:545-51.
- Friedman HS, Vasavada BC, Malec AM, Hassan KH, Shah A, Siddiqui S. Cardiac function in alcoholassociated systemic hypertension. Am J Cardiol. 1986;57:227-31.
- 7. Cerqueira MD, Harp GD, Ritchie JL, Stratton J, Walker D. Rarity of preclinical alcoholic cardiomyopathy in chronic alcoholics ,40 years of age. Am J Cardiol. 1991;67:183-7.
- 8. Urbano-Marquez A, Estruch R, Navarro-Lopez F, Grau JM, Mont L, Rubin E. The effects of alcoholism on skeletal and cardiac muscle. N Engl J Med. 1989;320:409-15.
- 9. Kupari M, Koskinen P, Suokas A, Ventila M. Left ventricular filling JACC. 2000: 1599-606.
- Silpakit P, Kittirattanapaiboon P. The acohol use disorders identification test: Guidelines for use in primary care. 1st Ed. Bangkok: Tantawanpaper Company. 2009;1-41.
- 11. Harcombe AA, Ramsay L, Kenna JG. Circulating antibodies to cardiac proteinacetaldehyde adducts in alcoholic heart muscle disease. Clin Sci (Colch). 1995;88(3):263-8.
- 12. Mathews EC Jr, Gardin JM, Henry WL, Del Negro AA. Echocardiographic abnormalities in chronic alcoholics with and without overt congestive heart failure. Am J Cardiol. 1981;47(3):570-8.
- 13. Mahela. Electrocardiographic and Echocardiographic Abnormalities in Chronic alcoholic patients. JAPI. 2003;51(132):1187.
- 14. Lazarevic. Cardiac Abnormalities in Chronic Alcoholic Patients. JACC. 2000;35(6):1599-606.
- 15. Ryan JM, Howes LG. Relations between alcohol consumption, heart rate, and heart rate variability in men. Heart. 2002;88(6):641-642.
- Krasniqi A, Bostaca I, Dima-Cosma C, Crişu D, Aursulesei V. Arrhythmogenic effects of alcohol.

- Rev Med Chir Soc Med Nat Iasi. 2011; 115(4): 1052-6
- 17. Pathophysiology-diagnosis-alcoholusedisorder-signs-symptoms-. Available at: https://img.grepmed.com/uploads/8234/pathophysiology-diagnosis-alcoholusedisorder-signs-symptoms-original.jpeg. Accessed on 23rd September, 2020.
- 18. Rehm J. The risks associated with alcohol use and alcoholism. Alcohol Res Health. 2011;34(2):135-43.
- 19. Hines LM, Rimm EB. Moderate alcohol consumption and coronary heart disease: a review. Postgrad Med J [Internet]. 2001;77(914):747-752.
- Krenz M, Korthuis RJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol. 2012;52(1):93-104.
- 21. Obad A, Peeran A, Little JI, Haddad GE, Tarzami ST. Alcohol-Mediated Organ Damages: Heart and Brain. Frontiers in Pharmacology. 2018;9:81.
- 22. Guo R, Hu N, Kandadi MR, Ren J. Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy. 2012;8(4):593-608.
- 23. Donohue TMJ. Autophagy and ethanol-induced liver injury. World J Gastroenterol. 2009;15(10):1178-85.
- 24. Lang CH, Frost RA, Summer AD, Vary TC. Molecular mechanisms responsible for alcoholinduced myopathy in skeletal muscle and heart. Int J Biochem Cell Biol. 2005;37(10):2180-95.
- 25. Fogle RL, Lynch CJ, Palopoli M, Deiter G, Stanley BA, Vary TC. Impact of chronic alcohol ingestion on cardiac muscle protein expression. Alcohol Clin Exp Res. 2010;34(7):1226-34.
- 26. Danziger RS, Sakai M, Capogrossi MC, Spurgeon HA, Hansford RG, Lakatta EG. Ethanol acutely and reversibly suppresses excitation-contraction coupling in cardiac myocytes. Circ Res. 1991;68(6):1660-8.
- 27. Aroor AR, Shukla SD. MAP kinase signaling in diverse effects of ethanol. Life Sci. 2004;74(19):2339-64.
- 28. Preedy VR, Ohlendieck K, Adachi J, Koll M, Sneddon A, Hunter R, et al. The importance of alcohol-induced muscle disease. J Muscle Res Cell Motil. 2003;24(1):55-63.
- 29. Adams MA, Hirst M. Metoprolol suppresses the development of ethanol-induced cardiac hypertrophy in the rat. Can J Physiol Pharmacol. 1990;68(5):562-7
- 30. Patel VB, Corbett JM, Dunn MJ, Winrow VR, Portmann B, Richardson PJ, et al. Protein profiling in cardiac tissue in response to the chronic effects of alcohol. Electrophoresis. 1997;18(15):2788-94.
- 31. Zhang X, Klein AL, Alberle II NS, Norby FL, Ren BH, Duan J, et al. Cardiac-specific overexpression of rescues ventricular myocytes from ethanol-induced cardiac contractile defect. J Mol Cell Cardiol. 2003;35(6):645-52.
- 32. Steinbigler P, Haberl R, König B, Steinbeck G. P-wave signal averaging identifies patients prone to

- alcohol-induced paroxysmal atrial fibrillation. Am J Cardiol. 2003;91(4):491-4.
- Machackova J, Barta J, Dhalla NS. Myofibrillar remodelling in cardiac hypertrophy, heart failure and cardiomyopathies. Can J Cardiol. 2006;22(11):953-68.
- 34. K. HG, Peter L, Uwe S, Zhong-Qun Y. Innate and Adaptive Immunity in the Pathogenesis of Atherosclerosis. Circ Res. 2002;91(4):281-91.
- 35. Lopes da Silva A, Ruginsk SG, Uchoa ET, Crestani CC, Scopinho AA, Correa FMA, et al. Time-Course of Neuroendocrine Changes and Its Correlation with Hypertension Induced by Ethanol Consumption. Alcohol Alcohol. 2013;48(4):495-504.
- 36. Piano MR, Rosenblum C, Solaro RJ, Schwertz D. Calcium sensitivity and the effect of the calcium sensitizing drug pimobendan in the alcoholic isolated rat atrium. J Cardiovasc Pharmacol. 1999;33(2):237-42.
- 37. Trevisani F, Sica G, Mainquà P, Santese G, De Notariis S, Caraceni P, et al. Autonomic dysfunction and hyperdynamic circulation in cirrhosis with ascites. Hepatology. 1999;30(6):1387-92.
- 38. Li Z, Guo X, Bai Y, Sun G, Guan Y, Sun Y, et al. The Association Between Alcohol Consumption and Left Ventricular Ejection Fraction: An Observational Study on a General Population. Medicine (Baltimore). 2016;95(21):e3763.
- 39. Scafa F, Mingrone R, Perotti M, Taccola A. Echocardiographic assessment of alcohol consumers in different clinical stages. Minerva Med. 1996;87(9):407-11.
- 40. Campbell RWF, Day CP, James OFW, Butler TJ. QT prolongation and sudden cardiac death in patients with alcoholic liver disease. Lancet. 1993;341(8858):1423-8.

- 41. Gonçalves A, Jhund PS, Claggett B, Shah AM, Konety S, Butler K, et al. Relationship between alcohol consumption and cardiac structure and function in the elderly: the Atherosclerosis Risk In Communities Study. Circ Cardiovasc Imaging. 2015;8(6):10.
- Lazarević AM, Nakatani S, Nesković AN, Marinković J, Yasumura Y, Stojicić D, et al. Early changes in left ventricular function in chronic asymptomatic alcoholics: relation to the duration of heavy drinking. J Am Coll Cardiol. 2000;35(6):1599-606.
- 43. Askanas A, Udoshi M, Sadjadi SA. The heart in chronic alcoholism: a noninvasive study. Am Heart J. 1980;99(1):9-16.
- 44. Meng S, Guo L, Li G. Early changes in right ventricular longitudinal function in chronic asymptomatic alcoholics revealed by two-dimensional speckle tracking echocardiography. Cardiovasc Ultrasound. 2016;14(1):16.
- 45. Wang Y, Shan G, Shen J, Zhou Q, Tan B, Liu Y, et al. Assessment of left ventricular function in chronic alcoholics by real-time three-dimensional echocardiography. Medicine (Baltimore). 2017;96(5):e6033-e6033.
- Cameron D, Bach D, Kolias T, LaBounty T. Modest Alcohol Consumption Is Associated With Favorable Findings On Echocardiography. J Am Coll Cardiol. 2019;73(9 Supplement 1):1605.

Cite this article as: Sindhya KS, Arthi PS. Estimation of left ventricular function in chronic alcoholics. Int J Adv Med 2021;8:667-71.