Original Research Article

DOI: https://dx.doi.org/10.18203/2349-3933.ijam20241015

Assessing the effectiveness of software driven digital therapeutics in patients with coronary artery disease or post coronary intervention: real-world evidence study

Abhijeet A. Palshikar¹, Chetan Gharat²*, Kamlesh Patel²

Received: 05 March 2024 Revised: 26 March 2024 Accepted: 28 March 2024

*Correspondence: Dr. Chetan Gharat,

E-mail: chetangharat@lupindigitalhealth.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Coronary artery disease (CAD) is a significant health concern worldwide. Acute coronary syndrome (ACS) is a common form of CAD that requires immediate treatment. Digital therapeutics (DTx) have emerged as a promising field for disease management, utilizing remote monitoring and promoting behavioral changes. This study aims to evaluate the effectiveness of LYFE app intervention in improving outcomes for patients with CAD, specifically those with ACS or who have undergone percutaneous coronary intervention (PCI).

Methods: This pilot, single-center, real-world evidence study evaluates the effectiveness of the LYFE in CAD and/or post-PCI patients. The primary goal was to assess adherence to medication, physical exercise, diet, and well-being of the participants. Secondary outcomes included assessing vital changes and the incidence of major adverse cardiovascular events over 6 months.

Results: Among all participants, the majority were male (93.3%) with a mean age of 53.2 ± 12.1 years. After implementing the LYFE app, 90% adhered to regular exercise, 79.3% to prescribed diet and 79.3% reported that they had no difficulty in remembering medication over 6 months. Additionally, notable improvements were observed in the well-being of the participants using the Dartmouth COOP questionnaire. Furthermore, the intervention significantly reduced SBP (-5.52 mmHg, p=0.038), and DBP (-2.63 mmHg, p=0.044) over 6-month follow-up. By the end of the study, 88.9% of the patients had their blood pressure under control. No cardiovascular death or major bleeding events were reported.

Conclusions: LYFE has the potential to enhance cardiovascular health and well-being in CAD and/or post-PCI patients.

Keywords: Cardiovascular health, CAD, Post-coronary interventions, Digital therapeutics, Blood pressure, Quality of life

INTRODUCTION

Coronary artery disease (CAD) poses a significant challenge to cardiovascular health, leading to a high number of deaths worldwide, especially among South Asian populations, including Indians. In this demography, the risk of developing CAD is significantly higher,

resulting in increased rates of hospitalization and mortality compared to other regions. 1,2

In India, CAD has become a serious public health issue, accounting for approximately 1.2 million deaths in 2012, which represents 26.9% of medically certified deaths in 2015. However, these numbers may underestimate the true prevalence due to incomplete mortality data,

¹Department of Cardiology, Cardiomet Clinic, Pune, Maharashtra, India

²Lupin Digital Health Limited, Santacruz (East), Mumbai, Maharashtra, India

underreported cases of asymptomatic CAD, and deaths related to silent heart attacks. These statistics highlight a concerning trend, with CAD experiencing a twofold increase in rural areas and a six-fold increase in urban areas from 1960 to 2002, clearly indicating an epidemic in the country.³

Modifying risk factors associated with CAD can have beneficial effects on the disease, helping with prevention, regression, and slowing down its progression, to further improve the quality of life (QoL) of patients. Secondary prevention serves as a therapeutic approach to impede the advancement of the disease and minimize damage after CAD diagnosis. In the treatment of CAD, PCI is the most widely used technique, showing remarkable efficacy in alleviating symptoms, especially in individuals with stable angina. The integration of technology into healthcare, known as mobile health (mHealth), has given rise to a new era. Mobile applications, particularly those designed for cardiovascular disease (CVD) patients, significantly enhance medication adherence and improve clinical outcomes.

However, despite advancements in smartphone-based surveillance systems, a significant question remains: Do these systems truly impact the overall well-being of endusers? To answer this, we aimed to evaluate the real-world effectiveness (RWE) of software-driven digital interventions, examining their impact on vital signs, medication adherence, lifestyle changes (including diet and exercise), cardiovascular events, and dimensions of well-being such as QoL using the Dartmouth COOP questionnaire, among patients with CAD and/or post-PCI.

METHODS

This prospective, single-center, RWE study was conducted over 6 months at Cardiomet clinic, Pune, Maharashtra. The study enrolled 30 patients with CAD and/or post-PCI from October 2022 to November 2022. Ethical approval was obtained from the institutional ethics committee (ECR/233/Indt/GJ/2015/RR-21) following good clinical practice guidelines. This study aimed to pilot a clinical evidence-based software-driven therapeutic intervention and evaluate its effectiveness and applicability in the real-world clinical setting.

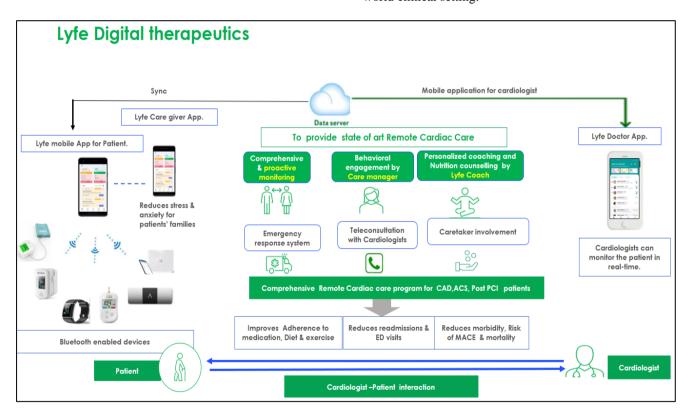


Figure 1: LYFE digital program flowchart for CAD/post-PCI patients.

Inclusion criteria

Participants aged ≥18 years with a documented diagnosis of CAD or a history of coronary intervention were eligible for enrollment. To participate, individuals were required to read and understand the informed consent form, provide authorization by signing it, and possess basic reading skills in English, Hindi, or Marathi. These criteria were

implemented to ensure a suitable and representative patient population for the study.

Exclusion criteria

Individuals with a history of psychiatric and neurological disorders impaired bilateral hearing, or visual impairment that limits smartphone use are not eligible to participate in this study. Individuals who are currently participating in other clinical trials or prospective cohort studies, those with severe physical disabilities that prevent participation, and those who refuse to provide consent are all excluded. Subjects who are considered unsuitable for any reason by the investigator are also ineligible for enrollment.

Intervention

The LYFE program, developed by Lupin digital health Pvt. Ltd., was used in the study (Figure 1). This personalized digital heart care program, designed by cardiologists, consists of a mobile app and connected devices including a wireless activity and heart rate (HR) tracker, a blood pressure (BP) monitor, and a smart weighing scale. These devices allow for easy monitoring of vital parameters such as BP, HR, and physical activity. Patients also received regular reminders for medications, lifestyle changes, and appointments.

The LYFE program offers seven key components including (i) comprehensive monitoring, (ii) adherence to lifestyle changes and medication, (iii) caregiver involvement, (iv) personalized coaching, (v) educational modules, (vi) an emergency response system, and (vii) access to ambulances and pre-determined hospitals, aiding patients in monitoring and managing their cardiac health. The LYFE program aims to empower patients with a personalized approach to heart care, providing control over their health through timely interventions and support.

Study outcomes

The primary objective of the study was to assess adherence to medication, exercise, and diet. In addition, the study comprehensively assessed nine domains of well-being, including various aspects such as QoL and other relevant factors, using the Dartmouth COOP questionnaire. The secondary objective was to assess the mean changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), and HR from baseline to 6 months follow-up and the incidence of major adverse cardiovascular events (MACE), and all-cause readmissions.

Statistical analysis

Descriptive statistics were used to analyze collected data, with the mean and standard deviation calculated for all variables. Paired t test was employed to determine significant mean differences between baseline and various follow-up periods. Statistical significance was defined as a p<0.05. Statistical analyses were performed using SPSS software (version 25.0; IBM Corp., Armonk, NY, USA), Microsoft corporation (2019), and Microsoft excel.

RESULTS

Baseline characteristics

The study included 30 patients, predominantly male (93.3%), with a mean age of 53.2±12.1 years. Their mean

height was 166.7±7.9 cm, weight 72.9±13.7 kg, and BMI 26.3±5.0 kg/m². Most were non-smokers (83.3%), abstained from alcohol (60%), and followed a non-vegetarian diet (60%). The results showed that 40% had no comorbidity, 30% had HTN, 20% had type 2 diabetes mellitus (T2DM), and 10% had both. Patients had an average SBP of 128.80±20.02 mmHg, DBP of 83.83±8.75 mmHg, and HR of 81.87±12.15 beats per minute (bpm). Majority (76.7%) of patients were diagnosed with STEMI.

Findings indicated that 53.3% of patients had single-vessel coronary artery lesions, 20% had double-vessel lesions, and 10% had triple-vessel lesions. Most patients (73.3%) underwent PCI, a few (6.7%) had CABG, and 1 patient (3.3%) received thrombolysis. A small percentage (16.7%) managed their condition solely with medications without specific interventions (Table 1).

Adherence to the LYFE digital program

Figure 2 illustrates adherence to a) medication, b) physical exercise, and c) diet in LYFE and SOC groups over 6 months. Of all the participants, 90% followed regular exercise, and 79.3% of them reported 'never/rarely,' indicating that they never felt difficulty remembering to take their medications and follow their prescribed diet.

Table 1: Demographics and baseline characteristics of the participant, (n=30).

Characteristics	N (%)/ mean ± SD	P value*	
Demographics			
Age (in years)	53.2±12.10	< 0.001	
Weight, (kg)	72.9±13.70	< 0.001	
Height, (cm)	166.7±7.90	< 0.001	
BMI, (kg/m ²)	26.3±5.0	< 0.001	
Gender			
Male	28.0 (93.30)	<0.001	
Female	2.0 (6.70)		
Smoking			
Never smoked	25.0 (83.3)	<0.001	
Current smoker	4.0 (13.3)		

Continued.

Characteristics	N (%)/ mean ± SD	P value*	
Past smoker	1.0 (3.3)		
Alcohol			
Never drinks	18.0 (60.0)	<0.001	
Current drinker	11.0 (36.7)		
Former drinker	1.0 (3.3)		
Dietary preferences			
Non-vegetarian	18.0 (60.0)	0.27	
Vegetarian	12.0 (40.0)	0.27	
Comorbidities			
Hypertension	9.0 (30.0)		
Type 2 diabetes mellitus (T2DM)	6.0 (20.0)	0.11	
Hypertension + T2DM	3.0 (10.0)		
None	12.0 (40)		
Initial diagnosis			
STEMI	23 (76.7)		
NSTEMI	1 (3.3)	<0.001	
Unstable angina	1 (3.3)	<0.001	
Others	5 (16.7)		
Coronary artery lesions			
Single vessel	16 (53.3)		
Double vessel	6 (20.0)	0.004	
Triple vessel	3 (10.0)		
Other	5 (16.7)		
Interventions			
PCI	22 (73.3)	<0.001	
CABG	2 (6.7)		
Thrombolysis	1 (3.3)		
Neither	3 (16.7)		

^{*}Statistically significant at p<0.05. CABG - coronary artery bypass graft; SD-standard deviation, NA-not applicable due to insufficient data; NSTEMI-Non-ST-elevation myocardial infarction; PCI-percutaneous coronary intervention; STEMI-ST-segment elevation myocardial infarction.

Patient well-being assessment

Figure 3 displays the mean differences observed in the nine well-being domains from baseline to 6 months. Social activities, health changes, daily activities, and QoL showed a slight improvement with mean changes of -0.36, -0.46, -0.55, and -0.59, respectively. Participants reported reduced pain (mean change: -0.68) and feelings (mean change: -0.72). Furthermore, overall health improved (mean change: -0.73), and the need for social support significantly decreased (mean change: 2.27) because the LYFE app does not create propagate or provide any social support groups or forums, while physical fitness showed significant improvement (mean change: -1.55).

Effects on clinical outcomes

Table 2 presents the changes in vital signs of the participants that were analyzed from baseline to 1 month, 3 months, and 6 months. At baseline, the mean SBP was 128.80±20.01 mmHg. After 1 month, the mean SBP significantly decreased to 120.69±15.80 mmHg (p<0.05). This reduction in SBP was sustained at 3 months, with a mean SBP of 118.67±16.74 mmHg (p<0.001), and at 6 months, with a mean SBP of 120.96±14.71 mmHg

(p=0.038). The mean DBP at baseline was 83.83 ± 8.74 mmHg. After 1 month, it decreased significantly to 80.24 ± 9.19 mmHg (p<0.05). This reduction continued at 3 months, with a mean of 79.41 ± 9.91 mmHg (p<0.01), and at 6 months, with a mean DBP of 80.52 ± 7.25 mmHg (p=0.044). No significant changes were observed in HR during the study period. HR showed little change at 1 month (0.03 bpm increase), increased at 3 months (1.81 bpm), and decreased at 6 months (1.70 bpm).

Furthermore, Figure 4 illustrates the BP levels of the study participants evaluated over 6 months to determine the status of controlled BP. Those who achieved SBP<140 mmHg and DBP <90 mmHg were classified as being within the controlled BP range. Of all the participants, 88.9% were 'in range,' and only 10.1% had uncontrolled BP levels.

The study also examined cardiovascular events in the study participants and did not find any clear indication of major bleeding events or recorded deaths. Additionally, the majority of participants (86.7%) did not experience any cardiovascular events, except for one (3.3%) who encountered a stroke (Table 3).

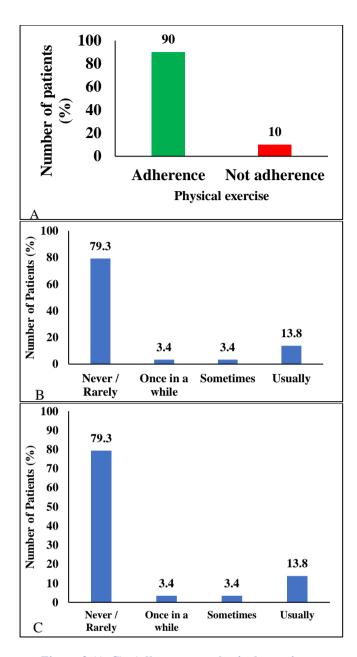


Figure 2 (A-C): Adherence to physical exercise, medication and diet in LYFE for 6-month follow-up.

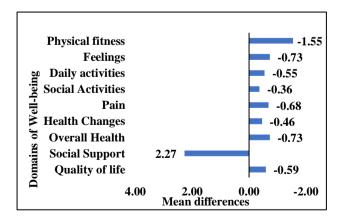


Figure 3: Well-being assessment of LYFE groups using Dartmouth COOP from baseline to 6 months.

Table 2: Mean changes in vitals from baseline to 6-month follow-up.

Characteristics	1 month, (n=30)	3-month, (n=30)	6-month, (n=30)	
Systolic blood pressure, SBP (mmHg)				
Baseline,	128.80±	128.80	128.80	
mean \pm SD	20.02	(20.02)	(20.02)	
Follow-up,	120.69	118.67	120.96	
mean \pm SD	(15.81)	(16.74)	(14.71)	
95% CI	1.53-	3.516-	0.34-	
	14.60	12.11	10.70	
P value	0.01	< 0.001	0.04	
Diastolic blood pressure, DBP (mmHg)				
Baseline,	83.83	83.83	83.83	
mean \pm SD	(8.75)	(8.75)	(8.75)	
Follow-up,	80.24	79.41	80.52	
mean \pm SD	(9.20)	(9.91)	(7.25)	
95% CI	0.96-6.49	1.50-5.99	5.19-2.11	
P value	0.01	0.001	0.04	
Pulse rate, PR (bpm)				
Baseline,	81.87	81.87	81.87	
mean \pm SD	(12.15)	(12.15)	(12.15)	
Follow-up,	82.03	83.15	79.63	
mean \pm SD	(9.82)	(11.09)	(10.19)	
95% CI	-2.30-	-5.41-	5.243-	
	2.23	1.78	0.99	
P value	0.49	0.15	0.33	

*Statistically significant at p<0.05. SD=standard deviation; CI=Confidence interval.

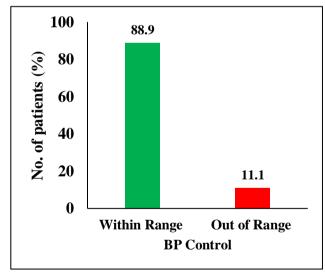


Figure 4: BP control at 6-month follow-up.

Table 3: Status of cardiovascular events, (n=30).

Cardiovascular events	N (%)
Cardiovascular death	0 (0)
Major bleeding events	0 (0)
Stroke or TIA	1 (3.3)
None	26 (86.7)

DISCUSSION

Recent studies have emphasized the potential of software-driven digital interventions in reducing cardiovascular risk factors. However, there is a lack of research on how these interventions impact health outcomes in managing CVD.⁸ Our study aimed to fill this gap by investigating how the 'LYFE' digital program affects key outcomes in people with CAD and/or those who underwent PCI. We assessed the program's impact on BP, medication adherence, well-being, and overall clinical outcomes, revealing some positive results.

In a study investigating the impact of gender on clinical outcomes in patients with CAD and/or post-PCI, a total of 1,032,828 patients were included. Of these, 774,115 were male and 258,713 were female. This observation aligns with the present study, which also had a significant proportion of male participants. The median age for the onset of the first heart attack in Indians is reported to be 53 years. 10 In a previous study that examined stable or unstable CAD patients who underwent successful PCI, the majority of the participants were male (63%) and the mean age of the study population was 56.65±9.65 years. 11 Similarly, in our study, we observed a similar trend with a significant number of participants having a mean age of 53.2±12.1 years. This indicates that the study population primarily consisted of middle-aged individuals, which is consistent with the previously reported median age for first heart attacks in Indians. In another prospective study. patients with proven CAD were recruited, and among the participants, the mean BMI was found to be 27.4±4.4 kg/m². Likewise, in the present study, the mean BMI of the participants was 26.3±5.0 kg/m².13 While smoking and alcohol consumption are known to be associated with CVD occurrence, surprisingly most of the participants in the current study were non-smokers and did not consume alcohol. These findings contribute to our understanding of the demographic and clinical characteristics of CAD and/or post-PCI patients.

Effectively managing CVD patients with comorbidities is important. This group faces higher mortality, reduced QoL, and increased healthcare service utilization compared to those without comorbidities. In a crosssectional study, a strong association was found between CAD and arrhythmias [odds ratio (OR): 2.55, 95% CI: 2.30-2.82]. Diabetes mellitus also significantly correlated with CAD (OR: 2.22, 95% CI: 2.02-2.45). 14 Furthermore. another study emphasized HTN as the most common risk factor for CVDs, showing its association with the development and progression of various atrial and ventricular arrhythmias. 15 HTN was also found to have a strong association with arrhythmias (OR 2.05; 95% CI, 2.30-2.82).¹⁴ Our study confirmed that HTN is the most common comorbidity among participants, and diabetes, either alone or with HTN, is frequently observed. These findings enhance our understanding of the connection between HTN, diabetes, and CAD. In the study comparing PCI in STEMI and NSTEMI patients, 417 individuals

underwent coronary intervention. Of these, 175 (42.0%) were diagnosed with acute myocardial infarction (MI). The analysis included 168 patients, with 104 (61.9%) having STEMI and 64 (38.1%) diagnosed with NSTEMI. The present study results were consistent with the findings with the majority of the participants having STEMI, further supporting the existing body of evidence.

In our study, a substantial number of patients underwent PCI for CAD management, which is considered the preferred initial treatment for individuals experiencing STEMI within 12 hours of symptom onset.¹⁷ Previous studies have shown that PCI could be as safe and effective as CABG, particularly in a select group of patients with left main CAD.¹⁸ The DELTA registry further supports this, demonstrating that PCI for ostial/mid-shaft lesions is associated with better clinical outcomes (propensity-score adjusted hazard ratio: 1.68, 95% CI: 1.19 to 2.38; p=0.003).¹⁹

With the widespread use of the internet and communication, electronic health technologies are now common, even among older adults. A particularly popular and rapidly growing aspect of this technology is mHealth.20 According to a systematic review on the prevention or management of non-communicable diseases, the included mHealth apps had an average adherence score of 56.0%.²¹ Additionally, a cross-sectional study focusing on patients with CVD found that 68.0% of them showed interest in using mHealth solutions to manage their condition. 22 Similarly, in our study, a significant number of participants were actively engaged, while a few had delayed responses. The high acceptance and adherence to our LYFE digital program, as demonstrated, highlight the effectiveness of our digital intervention, attributed to an array of in-app features such as nudges, notifications, regular reminders, and dietitian support.

A thorough review and meta-analysis of mHealth on secondary prevention of CVDs revealed that patients in the mHealth group had significantly increased adherence to medical therapy (OR, 4.51; p<0.00001) and both pharmacologic and non-pharmacologic therapy (OR, 3.86; p<0.0001). Additionally, they were more likely to meet recommended BP targets (OR, 2.80; p<0.001) with a tendency towards reaching the exercise goals (OR, 2.55; p=0.07).²³ In a systematic review and meta-analysis of randomized clinical trials (RCTs) that aimed to investigate the effects of mHealth on BP management, the pooled effects of mHealth interventions on BP control were estimated. When compared to the control group, the mHealth group was associated with significant reductions in both SBP (-3.85 mm Hg; 95% CI, -4.74 to -2.96) and DBP (-2.19 mm Hg; 95% CI, -3.16 to -1.23).²⁴ Over the 6month study period, we observed similar outcomes, with significant improvements in both SBP and DBP in the study population might be due to the improved adherence to physical exercise, diet and medication.

Medication nonadherence has long been a challenge for CVD patients and has been repeatedly recognized as a major contributor to adverse cardiovascular events. 25-27 However, the use of app-based interventions for medication adherence has shown promising results in addressing this issue.²⁸ The Text4Heart RCT, which had a 6-month intervention period, demonstrated significantly higher medication adherence scores [mean difference (MD): 0.58, 95% CI, 0.19-0.97; p=0.004). The SimCard trial, which lasted for 1-year, revealed that the intervention group had a 25.5% (p<0.001) higher net increase in the primary outcome-the proportion of patient-reported antihypertensive medication use pre- and post-intervention in comparison to the control group. ^{29,30} Our study showed similar results with almost all patients demonstrating medication adherence that can be attributed to in-app reminders and notifications, which help create habits and improve overall adherence. A review of activity trackers in CAD patients found a significant 0.51 risk ratio decrease in MACE (95% CI: 0.31-0.86; p=0.01).31 The MiCORE multicenter unrandomized controlled trial showed a 52% lower risk of all-cause 30-day readmissions [hazard ratio (HR) 0.48; 95% CI, 0.26-0.88] in the DHI group compared to the historical control group receiving standard of care.³² A population-wide analysis of managed care after acute myocardial infarction (MC-AMI) presented a 38% reduction in 1-year mortality, and the effect continued even after the completion of the program.³³ Interestingly, our study experienced no such adverse events, which is reassuring and suggests that the use of digital interventions may have a positive impact on secondary prevention in CAD patients.

The evaluation of mHealth-based interventions to reduce CVD risk factors revealed that 4 of 7 RCTs focusing on enhancing physical activity demonstrated significant improvements.³⁴ Home-based cardiac telerehabilitation programs showed a favorable outcome, with the intervention group showing an increase in the 6 WMT (MD: 16.59 meters, 95% CI:7.13-26.06, p=0.0006).³⁵ Moreover, smartphone-based interventions in CAD patients resulted in a noteworthy improvement in exercise capacity (20.10 meters, 95% CI:7.44-33.97, p<0.001, I²=45.58) and a review of RCTs highlighted that mHealth interventions improved QoL for patients post-coronary event, as evidenced by significant changes in the physical [standardized mean difference (SMD): 0.26, 95% CI, 0.09-0.44; p=0.004] and mental (SMD: 0.27, 95% CI, 0.06-0.47; p=0.01) aspects.^{36,37} Furthermore, mHealth interventions for CR and HF management demonstrated equal efficacy as traditional center-based CR (TCR), resulting in significant OoL improvements.³⁸ Similar to the above mentioned study results, our LYFE digital intervention, with the help of the Dartmouth COOP questionnaire, which has been widely used to assess the QoL of heart patients, achieved remarkable improvements in most of the well-being domains within our study population.^{39,40}

This study, while valuable, has limitations. The small sample size may limit generalizability. The absence of a control group hinders comparing the intervention's effectiveness and short follow-up might not capture longterm effects. Self-reported data on outcomes like medication adherence may introduce bias. Despite these limitations, our study offers insights into the LYFE digital program's potential benefits for CAD and/or post-PCI patients. Future research with larger samples and longer follow-ups is needed for broader validation in diverse clinical settings.

CONCLUSION

In conclusion, our study aimed to fill the research knowledge gap regarding the impact of digital health interventions by analyzing our 'LYFE' digital program and its effects on CAD and post-PCI patients. The program provides a wide range of benefits for users, including comprehensive monitoring, encouragement of adhering to lifestyle changes and medications, caregiver involvement, personalized coaching and support, disease education modules, an emergency response system, and access to ambulances and hospitals. The results of the study were highly encouraging, revealing positive outcomes in including improved medication various aspects, adherence, better BP control, enhanced patient well-being scores, and overall clinical improvements. These findings highlight the significant potential of software-driven digital interventions in effectively managing CAD and/or post-PCI patients, thereby reducing cardiovascular risks. Implementing such digital health programs can pave the way for more efficient and personalized patient care, ultimately contributing to better health outcomes for these patients.

ACKNOWLEDGEMENTS

The authors would like to thank the study investigators, staff, and all participants who took part in the study. Medical writing support was provided by Alpha MD Pvt Ltd, Mumbai.

Funding: Funding sources by Lupin Digital Health Limited.

Conflict of interest: None declared

Ethical approval: The study was approved by the **Ethics** Institutional Committee (ECR/233/Indt/GJ/2015/RR-21).

REFERENCES

- Malakar AKr, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812-23.
- Sucato V, Coppola G, Manno G, Vadalà G, Novo G, Corrado E, et al. Coronary Artery Disease in south patients: cardiovascular risk factors, asian

- pathogenesis and treatments. Curr Probl Cardiol. 2023;48(8):101228.
- 3. Ralapanawa U, Sivakanesan R. Epidemiology and the magnitude of Coronary Artery Disease and Acute Coronary Syndrome: a narrative review. J Epidemiol Glob Health. 2021;11(2):169-77.
- 4. Prasad K. Current Status of primary, secondary, and tertiary prevention of Coronary Artery Disease. Int J Angiol Off Publ Int Coll Angiol Inc. 2021;30(3):177-86.
- Khan SQ, Ludman PF. Percutaneous coronary intervention. Medicine (Baltimore). 2022;50(7):437-44.
- Al-Arkee S, Mason J, Lane DA, Fabritz L, Chua W, Haque MS, et al. Mobile apps to improve medication adherence in cardiovascular disease: systematic review and meta-analysis. J Med Internet Res. 2021;23(5):e24190.
- 7. Baig MM, Gholam Hosseini H, Connolly MJ. Mobile healthcare applications: system design review, critical issues and challenges. Australas Phys Eng Sci Med. 2015;38(1):23-8.
- Smith B, Magnani JW. New technologies, new disparities: The intersection of electronic health and digital health literacy. Int J Cardiol. 2019;292:280-82.
- 9. Guo Y, Yin F, Fan C, Wang Z. Gender difference in clinical outcomes of the patients with coronary artery disease after percutaneous coronary intervention. Medicine (Baltimore). 2018;97(30):e11644.
- 10. Sharma M, Ganguly NK. premature coronary artery disease in Indians and its associated risk factors. Vasc Health Risk Manag. 2005;1(3):217-25.
- Aggarwal P, Sinha SK, Marwah R, Nath RK, Pandit BN, Singh AP. Effect of Percutaneous Coronary Intervention on diastolic function in Coronary Artery Disease. J Cardiovasc Echography. 2021;31(2):73-6.
- 12. Ramchand J, Patel SK, Srivastava PM, Farouque O, Burrell LM. Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. Plos One. 2018;13(6):e0198144.
- 13. Notara V, Panagiotakos DB, Pitsavos CE. Secondary prevention of acute coronary syndrome. Socio-economic and lifestyle determinants: a literature review. Cent Eur J Public Health. 2014;22(3):175-82.
- 14. Kendir C, van den Akker M, Vos R, Metsemakers J. Cardiovascular disease patients have increased risk for comorbidity: A cross-sectional study in the Netherlands. Eur J Gen Pract. 2018;24(1):45-50.
- Afzal MR, Savona S, Mohamed O, Mohamed-Osman A, Kalbfleisch SJ. Hypertension and Arrhythmias. Heart Fail Clin. 2019;15(4):543-50.
- Liu CH, Huang YC. Comparison of STEMI and NSTEMI patients in the emergency department. J Acute Med. 2011;1(1):1-4.
- 17. Ibanez B, James S, Agewall S, Antunes M.J, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment

- elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2018;39(2):119-77.
- 18. Sharma SP, Dahal K, Khatra J, Rosenfeld A, Lee J. Percutaneous coronary intervention vs coronary artery bypass grafting for left main coronary artery disease? A systematic review and meta-analysis of randomized controlled trials. Cardiovasc Ther. 2017;35(3):10.1111/1755-5922.12260.
- 19. Naganuma T, Chieffo A, Meliga E, Capodanno D, Park SJ, Onuma Y, et al. Long-term clinical outcomes after percutaneous coronary intervention for ostial/mid-shaft lesions versus distal bifurcation lesions in unprotected left main coronary artery: the DELTA registry (drug-eluting stent for left main coronary artery disease): a multicenter registry evaluating percutaneous coronary intervention versus coronary artery bypass grafting for left main treatment. JACC Cardiovasc Interv. 2013;6(12):1242-29.
- 20. Schorr EN, Gepner AD, Dolansky MA, Forman D, Park L, Petersen K, et al. Harnessing mobile health technology for secondary cardiovascular disease prevention in older adults: a scientific statement from the American Heart Association. Circ Cardiovasc Qual Outcomes. 2021;14(5):e000103.
- 21. Jakob R, Harperink S, Rudolf AM, Fleisch E, Haug S, Mair JL, et al. Factors influencing adherence to mHealth apps for prevention or management of noncommunicable diseases: systematic review. J Med Internet Res. 2022;24(5):e35371.
- 22. Jiang J, Zhu Q, Zheng Y, Zhu Y, Li Y, Huo Y, et al. Perceptions and acceptance of mhealth in patients with cardiovascular diseases: a cross-sectional study. JMIR MHealth UHealth. 2019;7(2):e10117.
- 23. Gandhi S, Chen S, Hong L, Sun K, Gong E, Li C, et al. Effect of mobile health interventions on the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Can J Cardiol. 2017;33(2):219-31.
- 24. Lu X, Yang H, Xia X, Lu X, Lin J, Liu F, et al. Interactive mobile health intervention and blood pressure management in adults. Hypertension. 2019;74(3):697-704.
- 25. Pina IL, Di Palo KE, Brown MT, Choudhry NK, Cvengros J, Whalen D, et al. Medication adherence: importance, issues and policy: a policy statement from the American Heart Association. Prog Cardiovasc Dis. 2021;64:111-20.
- Horwitz RI, Viscoli CM, Berkman L, Donaldson RM, Horwitz SM, Murray CJ, et al. Treatment adherence and risk of death after a myocardial infarction. Lancet Lond Engl. 1990;336(8714):542-45.
- 27. Mehran R, Baber U, Steg PG, Ariti C, Weisz G, Witzenbichler B, et al. Cessation of dual antiplatelet treatment and cardiac events after percutaneous coronary intervention (PARIS): 2-year results from a prospective observational study. Lancet Lond Engl. 2013;382(9906):1714-22.

- 28. Armitage LC, Kassavou A, Sutton S. Do mobile device apps designed to support medication adherence demonstrate efficacy? A systematic review of randomized controlled trials, with meta-analysis. BMJ Open. 2020;10(1):e032045.
- 29. Pfaeffli Dale L, Whittaker R, Jiang Y, Stewart R, Rolleston A, Maddison R. Text message and internet support for coronary heart disease self-management: results from the Text4Heart randomized controlled trial. J Med Internet Res. 2015;17(10):e237.
- 30. Tian M, Ajay VS, Dunzhu D, Hameed SS, Li X, Liu Z, et al. A cluster-randomized, controlled trial of a simplified multifaceted management program for individuals at high cardiovascular risk (SimCard Trial) in Rural Tibet, China, and Haryana, India. Circulation. 2015;132(9):815-24.
- 31. Kaihara T, Intan-Goey V, Scherrenberg M, Falter M, Frederix I, Dendale P. Impact of activity trackers on secondary prevention in patients with coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol. 2022;29(7):1047-56.
- 32. Marvel FA, Spaulding EM, Lee MA, Yang WE, Demo R, Ding J, et al. Digital health intervention in Acute Myocardial Infarction. Circ Cardiovasc Qual Outcomes. 2021;14(7):e007741.
- 33. Wita K, Kułach A, Sikora J, Fluder J, Nowalany-Kozielska E, Milewski K, et al. Managed care after Acute Myocardial Infarction (MC-AMI) reduces total mortality in 12-month follow-up-results from a Poland's national health fund program of comprehensive Post-MI care-a population-wide analysis. J Clin Med. 2020;9(10):3178.
- 34. Cajita MI, Zheng Y, Kariuki JK, Vuckovic KM, Burke LE. mHealth technology and CVD risk reduction. Curr Atheroscler Rep. 2021;23(7):36.
- 35. Zhong W, Fu C, Xu L, Sun X, Wang S, He C, et al. Effects of home-based cardiac telerehabilitation

- programs in patients undergoing percutaneous coronary intervention: a systematic review and metaanalysis. BMC Cardiovasc Disord. 2023;23(1):101.
- Murphy AC, Meehan G, Koshy AN, Kunniardy P, Farouque O, Yudi MB. Efficacy of smartphone-based secondary preventive strategies in Coronary Artery Disease. Clin Med Insights Cardiol. 2020;14:1179546820927402.
- 37. Cruz-Cobo C, Bernal-Jiménez MÁ, Vázquez-García R, Santi-Cano MJ. Effectiveness of mHealth interventions in the control of lifestyle and cardiovascular risk factors in patients after a coronary event: systematic review and meta-analysis. JMIR MHealth UHealth. 2022;10(12):e39593.
- 38. Hamilton SJ, Mills B, Birch EM, Thompson SC. Smartphones in the secondary prevention of cardiovascular disease: a systematic review. BMC Cardiovasc Disord. 2018;8(1):25.
- 39. Helal SI, Murrells T, Grealish A, Evans CJ. Factors associated with depression and anxiety for community-dwelling patients with heart failure: a retrospective cohort study. J Cardiovasc Nurs. 2023;38(3):210.
- 40. Lakhani F, Racette SB, Park LK, Deych E, Williams D, McKenzie KM, et al. Prospective study of the impact of outpatient intensive cardiac rehabilitation on diet quality, health-related quality of life, and cardiovascular health indices. Am J Cardiol. 2023;192:60-6.

Cite this article as: Palshikar AA, Gharat C, Patel K. Assessing the effectiveness of software driven digital therapeutics in patients with coronary artery disease or post coronary intervention: real-world evidence study. Int J Adv Med 2024;11:210-8.