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INTRODUCTION 

Medical imaging techniques such as X-ray, computed 

tomography (CT), magnetic resonance imaging (MRI), 

ultrasound, positron emission tomography (PET), and 

digital pathology remain fundamental to modern 

healthcare, providing critical information for diagnosis, 

treatment planning, and patient monitoring. The increasing 

demand for image interpretation, coupled with the growing 

complexity and volume of imaging data, places a 

considerable burden on radiologists and clinicians. AI has 

emerged as a transformative solution, offering automated 

approaches that augment human expertise and streamline 

clinical workflows.1,2 AI refers to computational systems 

that mimic human cognition-such as perception, 

reasoning, and decision-making. Within AI, ML enables 

algorithms to recognize patterns from data without explicit 

programming, while DL leverages multilayered neural 

networks to autonomously extract hierarchical features 

from raw input. In radiology, convolutional neural 

networks (CNNs) have become the predominant DL 

architecture, excelling in image classification, 

segmentation, and diagnostic tasks.3,4 Radiomics, which 

converts images into quantitative descriptors, further 

enhances these models by uncovering features beyond 

human visual interpretation5. Recent developments 

illustrate the clinical potential of AI across specialties. For 

example, DL has improved detection and characterization 

of ophthalmic disorders, enhanced corneal disease 

management, and enabled prediction of surgical outcomes 

using generative adversarial networks (GANs).6-9 

Similarly, AI applications in oncology, neurology, and 

gastrointestinal imaging are advancing diagnostic 

precision and prognostic assessment.10-13 Despite this 
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progress, clinical implementation faces persistent barriers 

such as algorithmic bias, limited generalizability, 

interpretability challenges, and evolving regulatory 

standards. This review provides an integrated overview of 

current methodologies, applications, and future directions 

for AI in medical imaging, with a focus on both 

opportunities and translational hurdles. 

METHODOLOGICAL FOUNDATIONS AND 

TECHNIQUES 

ML in imaging early  

ML applications in imaging relied on handcrafted features 

and statistical models such as support vector machines and 

random forests. Radiomics exemplifies this approach by 

extracting quantitative features from images to reveal 

patterns beyond human perception.14 While useful, these 

approaches often lacked scalability and were limited by 

dependence on manual feature engineering.  

DL architectures 

DL, particularly CNN-based architectures, overcame these 

challenges by learning representations directly from data. 

Networks such as ResNet, DenseNet, and U-Net are now 

standard tools for classification and segmentation tasks.15 

DL approaches have been shown to produce encouraging 

results on histopathology images in various studies.16 More 

advanced variants, including attention-guided CNNs and 

recurrent neural networks, provide contextual and 

temporal insights into imaging data. The concept of a 

convolutional neural network (CNN) to recognize 

handwritten digits, paving the way for the use of deep 

neural networks in imaging.17 CNN algorithms enhance 

image analysis and reduce variability. The rising incidence 

of pancreatic diseases, including acute and chronic 

pancreatitis and various pancreatic neoplasms, poses a 

significant global health challenge.  CNNs, have been 

effective in detecting and differentiating between benign 

and malignant lesions. DL algorithms have also been used 

to predict survival time, recurrence risk, and therapy 

response in pancreatic cancer patients.  

Radiomics and AI synergy radiomics approaches 

Extracting quantitative features from imaging modalities 

such as CT, MRI, and endoscopic ultrasound, have 

enhanced the accuracy of these DL models.18 Combining 

AI and radiomics improved the breast ultrasound.19 

Radiomic models may aid various processes in breast 

cancer research.20 Combining radiomics with DL has 

enabled predictive models that integrate imaging 

phenotypes with genomic or molecular data-a field termed 

radiogenomics. These approaches show promise in 

oncology, where they can predict therapeutic outcomes 

and patient survival.21 Recent advancements in radiomics 

and AI offer novel solutions by integrating ML algorithms 

and quantitative imaging features to enhance prognostic 

precision and diagnostics.22 High-quality AI models 

trained on radiomics data demonstrate superior 

performance and helping physicians and patients in the 

study on thoracic trauma.23 

Explainable and interpretable 

AI interpretability is critical for clinical use. Visualization 

tools such as saliency maps, Grad-CAM, and attention 

mechanisms provide insights into model decision-

making.24 Nonetheless, the black-box nature of DL 

remains a barrier to clinician confidence.  

Emerging approach novel  

Strategies such as federated learning enable collaborative 

model training across institutions while preserving patient 

data privacy.25 Additionally, uncertainty quantification 

and model calibration are becoming important for 

enhancing reliability and clinical safety. 

CLINICAL APPLICATIONS OF AI IN MEDICAL 

IMAGING 

Disease detection and diagnosis  

DL systems have demonstrated expert-level performance 

in disease recognition tasks. For instance, algorithms now 

match ophthalmologists in detecting diabetic retinopathy 

from fundus photographs and achieve high sensitivity in 

identifying pulmonary nodules on chest CT.26,27 

Computer-aided diagnosis (CAD) powered by AI is 

increasingly incorporated into radiology workflows to 

support clinical decision-making. In neurology, AI-based 

methods are being developed for the early identification of 

neurodegenerative disorders such as Parkinson’s and 

Alzheimer’s disease, offering potential for timely 

intervention and improved patient outcomes.28  

Oncology and digital pathology  

Oncology is one of the most active areas for AI 

deployment. DL has shown remarkable accuracy in breast 

cancer detection and prognosis, utilizing both radiographic 

and histopathological data. Whole-slide histopathology 

imaging has been transformed through DL, enabling tumor 

subtype classification, prediction of genetic mutations, and 

survival outcome modeling.29 In clinical oncology, AI 

tools are increasingly applied to forecast therapeutic 

responses and stratify patients, reinforcing the promise of 

precision medicine.  

Image reconstruction and enhancement  

AI techniques are also advancing image acquisition and 

post-processing. In PET, DL-based methods improve 

image reconstruction, compensate for noise, and enhance 

resolution.30,31 In MRI and CT, these approaches reduce 

radiation exposure and scan times while maintaining 

diagnostic quality.32 Ultrasound imaging has similarly 



Vadlapudi V et al. Int J Adv Med. 2025 Nov;12(6):621-626 

                                                   International Journal of Advances in Medicine | November-December 2025 | Vol 12 | Issue 6    Page 623 

benefited, with AI-powered denoising methods producing 

clearer and more interpretable images.  

Multimodal integration  

The integration of multiple imaging modalities, alongside 

genomic and clinical data, is driving personalized 

medicine. For example, combining MRI and PET provides 

complementary information that enhances diagnostic 

accuracy. AI has also revealed associations between 

genetic mutations and morphologic features captured in 

pathology slides, linking imaging phenotypes to molecular 

mechanisms.33,34 Such multimodal frameworks enable 

more comprehensive patient profiling and improve 

prognostic modeling.  

Specialty-specific applications  

Beyond oncology and radiology AI has shown promise 

across numerous specialties. In ophthalmology, it aids in 

detecting retinal disorders; in cardiology, it supports 

echocardiographic analysis; and in pulmonology, it 

contributes to the diagnosis of COVID-19 from chest CT 

scans.35 Furthermore, multimodal DL has enabled 

integrative analyses of histopathology slides and genomic 

datasets across diverse cancer types, opening new avenues 

for biomarker discovery and translational research.36,37 

CHALLENGES AND LIMITATIONS 

Data quality and bias  

AI effectiveness is constrained by the quality and diversity 

of training datasets. AI algorithms are prone to bias at 

multiple stages of model development.38 AI in healthcare 

gains momentum, it brings forth profound ethical 

challenges that demand careful consideration. The primary 

concerns use of AI in healthcare includes responsibility 

privacy trust, bias, cybersecurity, transparency, and data 

quality.39-41 Inadequate representation of populations can 

introduce biases, potentially exacerbating health 

disparities.42  

Generalizability and reproducibility models  

Developed on single-center datasets often struggle to 

generalize across different populations or institutions due 

to variations in scanners, imaging protocols, and 

annotation standards. Beyond diagnostic imaging, 

artificial intelligence has also been explored for predicting 

clinical outcomes. For example, ML approaches designed 

to identify large vessel occlusions and viable brain tissue 

are crucial in extending the treatment window, thereby 

improving both patient prognosis and healthcare cost 

efficiency. However, for such models to be reliable, they 

must be reproducible-meaning the algorithms, underlying 

code, and datasets should be accessible, well-documented, 

and free of errors. At present, the absence of standardized 

reporting practices and the limited public availability of 

source code and clinical datasets pose significant 

challenges. These limitations not only hinder 

reproducibility but also conflict with the ethical principles 

of transparency and accountability in AI research.43  

Interpretability and trust  

Interpretability trust are critical parameters to developing 

transparent AI models that clinicians can trust for reliable 

decision support.44 The opaque decision-making of DL 

models undermines clinical trust. While explainable AI 

methods are progressing, achieving fully transparent 

models remains a challenge.  

Regulatory and ethical considerations  

Clinicians acknowledge that the rapid development and 

applications of AI in medical highlighting significant 

progress and innovation. Ethical challenges, such as data 

security, fairness, system bias, patient privacy and 

regulatory gaps are the potential for AI to replace human 

practitioners.45 The regulatory landscape for AI in 

healthcare is evolving. Although several AI-based imaging 

systems have received FDA approval, questions of 

liability, patient consent, and data security remain 

unsettled.46 

FUTURE DIRECTIONS 

Federated and privacy-preserving  

AI conventional centralized AI models require pooling 

sensitive patient data, raising concerns about 

confidentiality. Federated learning (FL) addresses this by 

enabling multiple institutions to collaboratively train 

models without exchanging raw data, maintaining privacy 

while achieving performance comparable to centralized 

approaches. Advanced methods integrate FL with 

differential privacy, secure multiparty computation, and 

homomorphic encryption to further reduce risks of data 

leakage.47,48 These frameworks promote cross-institutional 

collaboration, enhance model generalizability, and align 

with regulatory compliance.  

Trustworthy and explainable  

AI for AI systems to be widely adopted, they must not only 

perform accurately but also provide transparency and 

reliability. DL models are prone to overconfidence in 

uncertain scenarios and vulnerable to adversarial attacks, 

which undermines clinical trust. Incorporating uncertainty 

quantification and interpretability tools can provide 

confidence estimates alongside predictions, making 

outputs more reliable for clinical use.49,50 This shift toward 

explainable AI is crucial for clinician acceptance.  

Multimodal and multiscale models  

The future of AI in imaging is expected to converge 

diverse data sources-radiology, pathology, and genomics-

into unified predictive frameworks. Multimodal DL 
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approaches have already demonstrated superior 

performance compared with unimodal systems, 

particularly for tasks such as automated reporting, 

outcome prediction, and CAD.51,52 In addition, multiscale 

models that link imaging at cellular, organ, and 

physiological levels hold promise for patient-specific 

simulations, such as tailored cardiac models for therapy 

planning. Despite their potential, barriers such as data 

heterogeneity, interpretability, and generalizability remain 

pressing challenges. 

Clinical translation and regulation  

Although numerous high-performing AI algorithms have 

been published, relatively few have been integrated into 

routine clinical practice. Bridging this gap requires 

adherence to robust validation protocols, prospective 

trials, and standardized reporting frameworks such as 

CONSORT-AI and SPIRIT-AI. Once beyond initial 

development, models must demonstrate clinical validity 

(accuracy in real-world settings), clinical utility (impact on 

patient care), and usability (integration into daily 

workflows) before they can be reliably deployed.53  

Human-AI collaboration  

The trajectory of medical AI suggests a collaborative 

future rather than replacement of clinicians. Recent studies 

show that radiologists supported by large language models 

(LLMs), such as GPT-4, achieve modest improvements in 

diagnostic performance, underscoring the role of AI as a 

clinical assistant rather than a substitute.54 Applications in 

breast cancer screening already demonstrate how human–

AI interaction can improve accuracy, efficiency, and 

patient experience.55 By reducing workload and enhancing 

diagnostic consistency, AI will increasingly function as a 

complementary partner to clinicians. 

CONCLUSION 

Artificial intelligence, particularly ML and DL, is 

reshaping medical imaging by enhancing automation, 

diagnostic accuracy, and understanding of disease 

processes. Its applications in radiology, oncology, and 

pathology highlight its ability to improve clinical 

efficiency and support precision medicine. Nonetheless, 

widespread clinical deployment is constrained by 

challenges, including limited data diversity, model 

interpretability, potential biases, and regulatory 

uncertainties. Emerging strategies such as federated 

learning, explainable AI, and multimodal integration are 

critical to addressing these barriers and ensuring reliable 

real-world adoption. Multiscale frameworks that combine 

imaging, molecular, and clinical data are particularly 

promising for building comprehensive patient profiles and 

advancing personalized care. However, successful 

translation requires more than technological innovation-it 

must also prioritize fairness, transparency, 

interoperability, and rigorous prospective validation. 

Ultimately, the future of AI in medical imaging lies in 

collaborative human-AI models that complement rather 

than replace clinical expertise. By integrating ethical 

responsibility, clinician engagement, and robust 

validation, AI-driven imaging solutions can achieve safe, 

effective, and equitable integration into healthcare 

practice. 
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