Receptor tyrosine kinase signaling pathways: a review

Authors

  • Nikhil Pathi Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
  • Sundaram Viswanath Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
  • Abhishek Pathak Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
  • Anvesh Rathore Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India
  • Abhishek Prukayastha Department of Medical Oncology, Army Hospital Research and Referral, New Delhi, India

DOI:

https://doi.org/10.18203/2349-3933.ijam20163714

Keywords:

EGFR, PDGFR, Receptor tyrosine kinase pathways

Abstract

The two important enabling characteristics of cancer cells are uncontrolled proliferation and loss of programmed cell death (enhanced survival). These processes are tightly controlled by the discrete integration of signalling cascades that translate extracellular and intracellular cues into specific output responses.  Alterations in these pathways in cancer cells by mutation, amplification/deletion, chromosomal translocation, over expression, or epigenetic silencing lead to constitutive activation or suppression of signalling. We will review the major signal transduction cascade well known as the receptor tyrosine kinase pathway, focussing on their common alterations in human cancers and their clinical implications and therapeutics. Since major drug development efforts are presently being focused on the development of targeted inhibitors of oncogene-activated signalling pathways, a detailed understanding of these normal physiological pathways along with their deregulation in cancer will be required of both basic cancer researchers and practicing clinical oncologists for betterment of mankind suffering. Hence with this requirement in mind we have written this article to highlight some of the most important signal transduction pathways that is receptor tyrosine signalling pathways.

Metrics

Metrics Loading ...

References

Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548-57.

Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103:211-25.

Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373-98.

Kuriyan J, Cowburn D. Modular peptide recogni- tion domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct. 1997;26:259-88.

Pawson T. Protein modules and signalling net- works. Nature. 1995;373:573-80.

Carpenter G, King L, Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature. 1978;276:409-10.

Eckhart W, Hutchinson MA, Hunter T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell. 1979;18:925-33.

Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci. 1980;77:1311-5.

Yamamoto T, Hihara H, Nishida T. A new avian erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell. 1983;34:225-32.

Downward J, Yarden Y, Mayes E. Close similarity of epidermal growth factor receptor and verb-B oncogene protein sequences. Nature. 1984;307:521-7.

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127-37.

Jones JT, Akita RW, Sliwkowski MX. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 1999;447:227-31.

Klapper LN, Glathe S, Vaisman N. The ErbB-2/HER2 oncoprotein of human carcinomas may function solely as a shared coreceptor for mul- tiple stroma-derived growth factors. Proc Natl Acad Sci. 1999;96:4995-5000.

Porta GD, Beerli RR, Daly JM. ErbB2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16:1647-55.

Zaczek A, Brandt B, Bielawski KP. The diverse signaling network of EGFR, HER2, HER3 and HER4 tyrosine kinase receptors and the conse- quences for therapeutic approaches. Histol Histopathol. 2005;20:1005-15.

Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. J Biol Chem 1999;274:8865-74.

Okines A, Cunningham D, Chau I. Targeting the human EGFR family in esophagogastric cancer. Nat Rev Clin Oncol. 2011;8:492-503.

Kramarski PR, Soussan L, Waterman H. Diversification of Neu differentiation factor and epidermal growth factor signaling by combi- natorial receptor interactions. EMBO J. 1996;15:2452-67.

Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. J Clin Oncol. 2005;23:3227-34.

Pao W, Miller V, Zakowski M. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci. 2004;101:13306-11.

Krause DS, Etten RA. Tyrosine kinases as targets for cancer therapy. N Engl J Med. 2005;353:172-87.

Hirsch FR, Garcia VM, Bunn PA. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798-807.

Slamon DJ, Clark GM, Wong SG. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177-82.

Wong AJ, Ruppert JM, Bigner SH. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci. 1992;89:2965-9.

Li B, Yuan M, Kim IA. Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene. 2004;23:4594-602.

Lynch TJ, Bell DW, Sordella R. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129-39.

Cunningham D, Humblet Y, Siena S. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337-45.

Saltz LB, Meropol NJ, Loehrer Sr PJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22:1201-8.

Bonner JA, Harari PM, Giralt J. Radio therapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354:567-78.

Geyer CE, Forster J, Lindquist D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733-43.

Franklin MC, Carey KD, Vajdos FF. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5:317-28.

Shojaei S, Gardaneh M, Shamabadi RA. Target points in trastuzumab resistance. Int J Breast Cancer. 2012;2012:761917.

Bang YJ, Van Cutsem E, Feyereislova A. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro- oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-97.

Belfiore A, Frasca F, Pandini G. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586-623.

Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995;16:33-4.

Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov. 2002;1:769-83.

Nakae J, Kido Y, Accili D. Distinct and overlap- ping functions of insulin and IGF-I receptors. Endocr Rev. 2001;22:818-35.

Gombos A, Metzger FO, Dal LL. Clinical development of insulin-like growth factor receptor-1 (IGF-1R) inhibitors: At the crossroad? Invest New Drugs. 2012;30:2433-42.

Tarn C, Rink L, Merkel E. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci. 2008;105:8387-92.

Shimizu C, Hasegawa T, Tani Y. Expression of insulin-like growth factor 1 receptor in primary breast cancer: immune histochemical analysis. Hum Pathol. 2004;35:1537-42.

Riethmacher SE, Walter B, Acher D. The cros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 1996;10:1184-93.

Camidge DR, Doebele RC. Treating ALK-positive lung cancer early successes and future challenges. Nat Rev Clin Oncol. 2012;9:268-77.

Soda M, Choi YL, Enomoto M. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561-6.

Kwak EL, Bang YJ, Camidge DR. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693-703.

Bergethon K, Shaw AT, Ou SH. ROS1 rear- rangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863-70.

Davies KD, Le AT, Theodoro MF. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin Cancer Res. 2012;18:4570-9.

Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet derived growth factor. Physiol Rev. 1999;79:1283-316.

Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys. 2002;398:284-90.

Ostman A, Heldin CH. PDGF receptors as targets in tumor treatment. Adv Cancer Res. 2007;97:247-74.

Corless CL, Schroeder A, Griffith D. Mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 2005;23:5357-64.

Carroll M, Tomasson MH, Barker GF. The TEL/platelet-derived growth factor beta receptor (PDGF beta R) fusion in chronic myelomonocytic leukemia is a transforming protein that self- associates and activates PDGF beta R kinase- dependent signaling pathways. Proc Natl Acad Sci. 1996;93:14845-50.

Mcarthur GA. Dermato fibrosar coma pro tuberans: a surgical disease with a molecular savior. Curr Opin Oncol. 2006;18:341-6.

Cools J, DeAngelo DJ, Gotlib J. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348:1201-14.

Fleming TP, Saxena A, Clark WC. Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res. 1992;52:4550-3.

Demetri GD, Mehren M, Blanke CD. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472-80.

Andre C, Hampe A, Lachaume. Sequence analysis of two genomic regions containing the KIT and the FMS receptor tyrosine kinase genes. Genomics. 1997;39:216-26.

Yarden Y, Kuang WJ, Feng YT. Human proto oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J. 1987;6:3341-51.

Huang E, Nocka K, Beier DR. The hemato poietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990;63:225-33.

Mol CD, Dougan DR, Schneider TR. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem. 2004;279:31655-63.

Lev S, Yarden Y, Givol D. Dimerization and activa- tion of the kit receptor by monovalent and bivalent binding of the stem cell factor. J Biol Chem. 1992;267:15970-7.

Antonescu CR. The GIST paradigm: lessons for other kinase-driven cancers. J Pathol. 2011;223:251-61.

Corless CL, Barnett CM, Heinrich MC. Gastroin- testinal stromal tumours: origin and molecular oncology. Nat Rev Cancer. 2011;11:865-78.

Hirota S, Isozaki K, Moriyama Y. Gain-of- function mutations of c-kit in human gastrointes- tinal stromal tumors. Science. 1998;279:577-80.

Kindblom LG, Remotti HE, Aldenborg F. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol. 1998;152:1259-69.

Fletcher JA, Rubin BP. KIT mutations in GIST. Curr Opin Genet Dev. 2007;17:3-7.

Leung AY, Man CH, Kwong YL. FLT3 inhibition: a moving and evolving target in acute myeloid leukaemia. Leukemia. 2013;27(2):260-8.

Turner N, Grose R. Fibroblast growth factor sig- nalling: from development to cancer. Nat Rev Cancer. 2010;10:116-29.

Pierrot BI, Brams A, Larde DC. Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis. 2006;27:740-7.

Sibley K, Fenton JA, Dring AM. A molecular study of the t(4;14) in multiple myeloma. Br J Haematol. 2002;118:514-20.

Takeda M, Arao T, Yokote H. AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res. 2007;13:3051-7.

Wang Y, Becker D. Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med. 1997;3:887-93.

Memarzadeh S, Xin L, Mulholland DJ. Enhanced paracrine FGF10 expression promotes formation of multifocal prostate adenocarcinoma and an increase in epithelial androgen receptor. Cancer Cell. 2007;12:572-85.

Qing J, Du X, Chen Y. Antibody based targeting of FGFR3 in bladder carcinoma and (4;14) positive multiple myeloma in mice. J Clin Invest. 2009;119:1216-29.

Costantini F, Shakya R. GDNF/Ret signaling and the development of the kidney. Bioassays. 2006;28:117-27.

Taraviras S, Gutierrez CV, Durbec P. Signalling by the RET receptor tyrosine kinase and its role in the development of the mammalian enteric nervous system. Development. 1999;126:2785-97.

Wells SA, Santoro M. Targeting the RET pathway in thyroid cancer. Clin Cancer Res. 2009;15:7119-23.

Mulligan LM, Kwok JB, Healey CS. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature. 1993;363:458-60.

Wells SA, Robinson BG, Gagel RF. Van detanib in patients with locally advanced or meta- static medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol. 2012;30:134-41.

Kurzrock R, Sherman SI, Ball DW. Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660-6.

Ferrara N, Gerber HP, Lecouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669-76.

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25:581-611.

Hurwitz H, Fehrenbacher L, Novotny W. Bevacizumab plus irinotecan, fluorouracil, and leu- covorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335-42.

Sandler A, Gray R, Perry MC. Paclitaxel- carboplatin alone or with bevacizumab for non- small-cell lung cancer. N Engl J Med. 2006;355:2542-50.

Vredenburgh JJ, Desjardins A, Herndon JE. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722-9.

Escudier B, Pluzanska A, Koralewski P. Beva- cizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103-11.

Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007;25:884-96.

Kane RC, Farrell AT, Madabushi R. Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist. 2009;14:95-100.

Escudier B, Eisen T, Stadler WM. Sorafenib for treatment of renal cell carcinoma: Final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol. 2009;27:3312-8.

Sternberg CN, Davis ID, Mardiak J. Pazo panib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol. 2010;28:1061-8.

Rini BI, Escudier B, Tomczak P. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a ran- domised phase 3 trial. Lancet. 2011;378:1931-9.

Loges S, Schmidt T, Carmeliet P. Mechanisms of resistance to anti-angiogenic therapy and develop- ment of third-generation anti-angiogenic drug candidates. Genes Cancer. 2010;1:12-25.

Bottaro DP, Rubin JS, Faletto DL. Identification of the hepatocyte growth factor receptor as the cmet proto-oncogene product. Science. 1991;251:802-4.

Furge KA, Zhang YW, Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene. 2000;19:5582-9.

Engelman JA, Zejnullahu K, Mitsudomi T. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039-43.

Schmidt L, Duh FM, Chen F. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal car- cinomas. Nat Genet. 1997;16:68-73.

Peters S, Adjei AA. MET: a promising anticancer therapeutic target. Nat Rev Clin Oncol. 2012;9:314-26.

Spigel D, Ervin, TJ, Ramlau R. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combina- tion with erlotinib in advanced NSCLC. J Clin Oncol. 2011;29.

Downloads

Published

2016-12-24

Issue

Section

Review Articles