High altitude marathon physiology changes

Authors

  • Medha Oak OAK Hospital, Dombivli, Maharashtra, India
  • Ajit Oak OAK Hospital, Dombivli, Maharashtra, India
  • Bageshree Oak OAK Hospital, Dombivli, Maharashtra, India

DOI:

https://doi.org/10.18203/2349-3933.ijam20251086

Keywords:

High altitude marathon, Hypoxia, Vo2 Mx, Genetics, Training

Abstract

High-altitude marathons present unique physiological challenges due to environmental factors such as reduced oxygen availability, decreased atmospheric pressure, and extreme temperature fluctuations. These conditions impose significant stress on the human body, requiring acute and chronic physiological adaptations to maintain performance. Acute responses include increased ventilation, elevated heart rate, and enhanced oxygen delivery mechanisms, while chronic adaptations involve hematological changes such as elevated erythropoiesis, cardiovascular remodeling, and skeletal muscle adaptations. Despite these adaptations, high-altitude conditions can substantially impact athletic performance, reducing aerobic capacity and increasing the risk of hypoxia-induced fatigue. Effective training and acclimatization strategies, such as altitude training camps and pre-acclimatization protocols, are critical for optimizing performance and minimizing the risks of high-altitude illnesses, including acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), and high-altitude cerebral edema (HACE). Furthermore, genetic predispositions, as observed in high-altitude native populations, may influence an athlete's ability to adapt to these environments. This review explores the interplay between environmental challenges, physiological adaptations, and athletic performance in high-altitude marathons. It highlights current strategies for preparation, potential medical risks, and future research opportunities in understanding the unique demands of high-altitude endurance events. Insights from this study aim to guide athletes, coaches, and medical professionals in optimizing training, performance, and safety during high-altitude marathons.

Metrics

Metrics Loading ...

References

West JB. High-altitude medicine. Am J Respir Crit Care Med. 2012;186(12):1229-37. DOI: https://doi.org/10.1164/rccm.201207-1323CI

Wagner PD. Reduced maximal cardiac output at altitude--mechanisms and significance. Respir Physiol. 2000;120(1):1-11. DOI: https://doi.org/10.1016/S0034-5687(99)00101-2

Levine BD, Stray-Gundersen J. "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102-12.

Fulco CS, Rock PB, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful. Aviat Space Environ Med. 2000;71(2):162-71.

Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107-14. DOI: https://doi.org/10.1056/NEJM200107123450206

Levine BD, Stray-Gundersen J. Point: positive effects of intermittent hypoxia (live high: train low) on exercise performance are mediated primarily by augmented red cell volume. J Appl Physiol. 2005;99(5):2053-5. DOI: https://doi.org/10.1152/japplphysiol.00877.2005

West JB. The physiologic basis of high-altitude diseases. Ann Intern Med. 2004;141(10):789-800. DOI: https://doi.org/10.7326/0003-4819-141-10-200411160-00010

Jokl E, Jokl P, Seaton DC. Effect of altitude upon 1968 Olympic Games running performances. Int J Biometeorol. 1969;13(3):309-11. DOI: https://doi.org/10.1007/BF01553038

Levine BD, Stray-Gundersen J. "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102-12. DOI: https://doi.org/10.1152/jappl.1997.83.1.102

Fulco CS, Rock PB, Cymerman A. Improving athletic performance: is altitude residence or altitude training helpful Aviat Space Environ Med. 2000;71(2):162-71.

Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE, et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360(2):140-9. DOI: https://doi.org/10.1056/NEJMoa0801581

Karpęcka-Gałka E, Frączek B. Nutrition, hydration and supplementation considerations for mountaineers in high-altitude conditions: a narrative review. Front Sports Act Living. 2024;6:1435494. DOI: https://doi.org/10.3389/fspor.2024.1435494

Powell FL. The influence of chronic hypoxia upon chemoreception. Respir Physiol Neurobiol. 2007;157(1):154-61. DOI: https://doi.org/10.1016/j.resp.2007.01.009

Malte H, Lykkeboe G. The Bohr/Haldane effect: a model-based uncovering of the full extent of its impact on O2 delivery to and CO2 removal from tissues. J Appl Physiol. 2018;125(3):916-22. DOI: https://doi.org/10.1152/japplphysiol.00140.2018

Hoppeler H, Vogt M, Weibel ER, Flück M. Response of skeletal muscle mitochondria to hypoxia. Exp Physiol. 2003;88(1):109-19. DOI: https://doi.org/10.1113/eph8802513

Hochachka PW. Mechanism and evolution of hypoxia-tolerance in humans. J Exp Biol. 1998;201(8):1243-54. DOI: https://doi.org/10.1242/jeb.201.8.1243

Vanek T, Kohli A. Biochemistry, Myoglobin. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2024.

Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med Sci Sports Exerc. 2016;48(11):2320-34. DOI: https://doi.org/10.1249/MSS.0000000000000939

Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose. J Appl Physiol. 2016;121(1):352-5. DOI: https://doi.org/10.1152/japplphysiol.00579.2015

Stellingwerff T, Peeling P, Garvican-Lewis LA, Hall R, Koivisto AE, Heikura IA, et al. Nutrition and Altitude: Strategies to Enhance Adaptation, Improve Performance and Maintain Health: A Narrative Review. Sports Med. 2019;49(2):169-84. DOI: https://doi.org/10.1007/s40279-019-01159-w

Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51(5):1000-13. DOI: https://doi.org/10.1016/j.freeradbiomed.2011.05.017

Storz JF, Cheviron ZA. Physiological Genomics of Adaptation to High-Altitude Hypoxia. Annu Rev Anim Biosci. 2021;9:149-71. DOI: https://doi.org/10.1146/annurev-animal-072820-102736

Haase VH. Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev. 2013;27(1):41-53. DOI: https://doi.org/10.1016/j.blre.2012.12.003

Greenwald AC, Licht T, Kumar S, Oladipupo SS, Iyer S, Grunewald M, et al. VEGF expands erythropoiesis via hypoxia-independent induction of erythropoietin in noncanonical perivascular stromal cells. J Exp Med. 2019;216(1):215-30. DOI: https://doi.org/10.1084/jem.20180752

Julian CG, Moore LG. Human Genetic Adaptation to High Altitude: Evidence from the Andes. Genes (Basel). 2019;10(2):150. DOI: https://doi.org/10.3390/genes10020150

Beall CM. Tibetan and Andean contrasts in adaptation to high-altitude hypoxia. Adv Exp Med Biol. 2000;475:63-74. DOI: https://doi.org/10.1007/0-306-46825-5_7

Simonson TS. Altitude Adaptation: A Glimpse Through Various Lenses. High Alt Med Biol. 2015;16(2):125-37. DOI: https://doi.org/10.1089/ham.2015.0033

Bärtsch P, Swenson ER. Clinical practice: Acute high-altitude illnesses. N Engl J Med. 2013;368(24):2294-302. DOI: https://doi.org/10.1056/NEJMcp1214870

Luks AM, Auerbach PS, Freer L, Grissom CK, Keyes LE, McIntosh SE, et al. Wilderness Medical Society Clinical Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness: 2019 Update. Wilderness Environ Med. 2019;30(4):3-18. DOI: https://doi.org/10.1016/j.wem.2019.04.006

Hackett PH, Roach RC, Wood RA, Foutch RG, Meehan RT, Rennie D. Dexamethasone for prevention and treatment of acute mountain sickness. Aviat Space Environ Med. 1988;59(10):950-4.

Sawka MN, Cheuvront SN, Carter R 3rd. Human water needs. Nutr Rev. 2005;63(2):30-9. DOI: https://doi.org/10.1111/j.1753-4887.2005.tb00152.x

Taylor AT. High-altitude illnesses: physiology, risk factors, prevention, and treatment. Rambam Maimonides Med J. 2011;2(1):22. DOI: https://doi.org/10.5041/RMMJ.10022

Mallet RT, Burtscher J, Pialoux V, Pasha Q, Ahmad Y, Millet GP, Burtscher M. Molecular Mechanisms of High-Altitude Acclimatization. Int J Mol Sci. 2023;24(2):1698. DOI: https://doi.org/10.3390/ijms24021698

Raberin A, Burtscher J, Citherlet T, Manferdelli G, Krumm B, Bourdillon N, et al. Women at Altitude: Sex-Related Physiological Responses to Exercise in Hypoxia. Sports Med. 2024;54(2):271-87. DOI: https://doi.org/10.1007/s40279-023-01954-6

Seshadri DR, Li RT, Voos JE, Rowbottom JR, Alfes CM, Zorman CA, Drummond CK. Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit Med. 2019;2:71. DOI: https://doi.org/10.1038/s41746-019-0149-2

Colombani T, Bhatt K, Epel B, Kotecha M, Bencherif SA. HIF-stabilizing biomaterials: from hypoxia-mimicking to hypoxia-inducing. Mater Adv. 2023;4(15):3084-90. DOI: https://doi.org/10.1039/D3MA00090G

Downloads

Published

2025-04-24

How to Cite

Oak, M., Oak, A., & Oak, B. (2025). High altitude marathon physiology changes. International Journal of Advances in Medicine, 12(3), 333–339. https://doi.org/10.18203/2349-3933.ijam20251086

Issue

Section

Review Articles