Artificial intelligence in medical imaging: bridging innovation, ethics, and clinical impact

Authors

  • Varahalarao Vadlapudi Diabetomics Medical Private Limited, Muppireddypally Village, Medak, Telangana, India
  • Dowluru S. V. G. K. Kaladhar Department of Microbiology and Bioinformatics, UTD, Atal Bihari Vajpayee University, Bilaspur, Chhattisgarh, India

DOI:

https://doi.org/10.18203/2349-3933.ijam20253360

Keywords:

Artificial intelligence, Machine learning, Deep learning

Abstract

Medical imaging is essential for diagnosis, treatment planning, and disease monitoring. The integration of artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), is revolutionizing this field by automating image analysis and improving diagnostic performance. This review synthesizes recent advancements in AI applications for medical imaging, with a focus on radiology, oncology, and digital pathology. Core methodologies, including image classification, segmentation, reconstruction, and multimodal integration, are examined alongside emerging approaches such as federated learning and explainable AI. AI models demonstrate strong potential in enhancing diagnostic accuracy, reducing variability, and improving workflow efficiency. However, key barriers remain, including data quality limitations, algorithmic bias, lack of interpretability, and regulatory challenges. Novel strategies, including cross-modality fusion and privacy-preserving frameworks, are being explored to address these issues and improve generalizability. AI-driven medical imaging tools are poised to advance personalized care and clinical decision-making. Achieving widespread adoption will require fairness, transparency, clinician engagement, and rigorous real-world validation to ensure safe and effective integration into healthcare practice.

Metrics

Metrics Loading ...

References

Sorantin E, Grasser MG, Hemmelmayr A, Tschauner S, Hrzic F, Weiss V, et al. The augmented radiologist: artificial intelligence in the practice of radiology. Pediatr Radiol. 2022;52(11):2074–86. DOI: https://doi.org/10.1007/s00247-021-05177-7

Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging. 2020;68:A1–4. DOI: https://doi.org/10.1016/j.mri.2019.12.006

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44. DOI: https://doi.org/10.1038/nature14539

Esteva A, Kuprel B, Novoa RA. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8. DOI: https://doi.org/10.1038/nature21056

Giger ML. Machine learning in medical imaging. J Am Coll Radiol. 2018;15(3 Pt B):512–20. DOI: https://doi.org/10.1016/j.jacr.2017.12.028

Gurnani B, Kaur K, Lalgudi VG, Kundu G, Mimouni M, Liu H, et al. Role of artificial intelligence, machine learning and deep learning models in corneal disorders—a narrative review. J Fr Ophtalmol. 2024;47(7):104242. DOI: https://doi.org/10.1016/j.jfo.2024.104242

Saeed AQ, Sheikh Abdullah SNH, Che-Hamzah J, Abdul Ghani AT. Accuracy of using generative adversarial networks for glaucoma detection: systematic review and bibliometric analysis. J Med Internet Res. 2021;23(9):e27414. DOI: https://doi.org/10.2196/27414

Khan ZK, Umar AI, Shirazi SH, Rasheed A, Qadir A, Gul S. Image-based analysis of meibomian gland dysfunction using conditional generative adversarial neural network. BMJ Open Ophthalmol. 2021;6(1):e000436 DOI: https://doi.org/10.1136/bmjophth-2020-000436

Waisberg E, Ong J, Kamran SA, Masalkhi M, Paladugu P, Zaman N, et al. Generative artificial intelligence in ophthalmology. Surv Ophthalmol. 2025;70(1):1–11. DOI: https://doi.org/10.1016/j.survophthal.2024.04.009

Avanzo M, Porzio M, Lorenzon L, Milan L, Sghedoni R, Russo G, et al. Artificial intelligence applications in medical imaging: a review of the medical physics research in Italy. Phys Med. 2021;83:221–41. DOI: https://doi.org/10.1016/j.ejmp.2021.04.010

Rondina J, Nachev P. Artificial intelligence and stroke imaging. Curr Opin Neurol. 2025;38(1):40–6. DOI: https://doi.org/10.1097/WCO.0000000000001333

Loper MR, Makary MS. Evolving and novel applications of artificial intelligence in abdominal imaging. Tomography. 2024;10(11):1814–31. DOI: https://doi.org/10.3390/tomography10110133

Ramai D, Collins B, Ofosu A, Mohan BP, Jagannath S, Tabibian JH, et al. Deep learning methods in the imaging of hepatic and pancreaticobiliary diseases. J Clin Gastroenterol. 2025;59(5):405–11. DOI: https://doi.org/10.1097/MCG.0000000000002125

Lambin P, Rios-Velazquez E, Leijenaar R. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6. DOI: https://doi.org/10.1016/j.ejca.2011.11.036

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: MICCAI 2015. Springer; 2015. p. 234–41. DOI: https://doi.org/10.1007/978-3-319-24574-4_28

Sirinukunwattana K, Ahmed Raza SE, Tsang YW, Snead DR, Cree IA, Rajpoot NM. Locality sensitive deep learning for detection and classification of nuclei in colon cancer histology images. IEEE Trans Med Imaging. 2016;35(5):1196–206. DOI: https://doi.org/10.1109/TMI.2016.2525803

Avanzo M, Stancanello J, Pirrone G, Drigo A, Retico A. The evolution of artificial intelligence in medical imaging: from computer science to machine and deep learning. Cancers (Basel). 2024;16(21):3702. DOI: https://doi.org/10.3390/cancers16213702

Podină N, Gheorghe EC, Constantin A, Cazacu I, Croitoru V, Gheorghe C, et al. Artificial intelligence in pancreatic imaging: a systematic review. United European Gastroenterol J. 2025;13(1):55–77. DOI: https://doi.org/10.1002/ueg2.12723

Bahl M. Combining AI and radiomics to improve the accuracy of breast US. Radiology. 2024;312(3):e241795. DOI: https://doi.org/10.1148/radiol.241795

Qi YJ, Su GH, You C, Zhang X, Xiao Y, Jiang YZ, et al. Radiomics in breast cancer: current advances and future directions. Cell Rep Med. 2024;5(9):101719. DOI: https://doi.org/10.1016/j.xcrm.2024.101719

Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. DOI: https://doi.org/10.1148/radiol.2015151169

Peng D, Huang W, Liu R, Zhong W. From pixels to prognosis: radiomics and AI in Alzheimer's disease management. Front Neurol. 2025;16:1536463. DOI: https://doi.org/10.3389/fneur.2025.1536463

Hefny AF, Almansoori TM, Smetanina D, Morozova D, Voitetskii R, Das KM, et al. Streamlining management in thoracic trauma: radiomics- and AI-based assessment of patient risks. Front Surg. 2024;11:1462692. DOI: https://doi.org/10.3389/fsurg.2024.1462692

Selvaraju RR, Cogswell M, Das A. Grad-CAM: visual explanations from deep networks via gradient-based localization. Proc IEEE ICCV. 2017:618–26. DOI: https://doi.org/10.1109/ICCV.2017.74

Sheller MJ, Edwards B, Reina GA. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10:12598. DOI: https://doi.org/10.1038/s41598-020-69250-1

Gulshan V, Peng L, Coram M. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10 DOI: https://doi.org/10.1001/jama.2016.17216

Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest CT. Nat Med. 2019;25:954–61. DOI: https://doi.org/10.1038/s41591-019-0447-x

Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, et al. Artificial intelligence in Parkinson's disease: early detection and diagnostic advancements. Ageing Res Rev. 2024;99:102410. DOI: https://doi.org/10.1016/j.arr.2024.102410

Coudray N, Ocampo PS, Sakellaropoulos T. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24:1559–67. DOI: https://doi.org/10.1038/s41591-018-0177-5

Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, et al. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020;76:294–306. DOI: https://doi.org/10.1016/j.ejmp.2020.07.028

Reader AJ, Pan B. AI for PET image reconstruction. Br J Radiol. 2023;96(1150):20230292. DOI: https://doi.org/10.1259/bjr.20230292

Hammernik K, Klatzer T, Kobler E. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055–71. DOI: https://doi.org/10.1002/mrm.26977

Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022;40(10):1095–110. DOI: https://doi.org/10.1016/j.ccell.2022.09.012

He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin Cancer Biol. 2023;88:187–200. DOI: https://doi.org/10.1016/j.semcancer.2022.12.009

Chan JF, Zhang AJ, Yuan S, Poon VK, Chan CC, Lee AC, et al. Simulation of the clinical and pathological manifestations of COVID-19 in a golden Syrian hamster model. Clin Infect Dis. 2020;71(9):2428–46. DOI: https://doi.org/10.1093/cid/ciaa325

Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, et al. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022;40(8):865–78.e6. DOI: https://doi.org/10.1016/j.ccell.2022.07.004

Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med. 2011;3(108):108ra113. DOI: https://doi.org/10.1126/scitranslmed.3002564

Tejani AS, Ng YS, Xi Y, Rayan JC. Understanding and mitigating bias in imaging artificial intelligence. Radiographics. 2024;44(5):e230067. DOI: https://doi.org/10.1148/rg.230067

Jeyaraman M, Balaji S, Jeyaraman N, Yadav S. Unraveling the ethical enigma: artificial intelligence in healthcare. Cureus. 2023;15(8):e43262. DOI: https://doi.org/10.7759/cureus.43262

Sallam M. ChatGPT utility in healthcare education, research, and practice: systematic review on the promising perspectives and valid concerns. Healthcare (Basel). 2023;11(6):887. DOI: https://doi.org/10.3390/healthcare11060887

Prakash S, Balaji JN, Joshi A, Surapaneni KM. Ethical conundrums in the application of artificial intelligence in healthcare—a scoping review of reviews. J Pers Med. 2022;12(11):1914. DOI: https://doi.org/10.3390/jpm12111914

Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine. Science. 2019;363:810–2. DOI: https://doi.org/10.1126/science.aaw0029

Romoli M, Caliandro P. Artificial intelligence, machine learning, and reproducibility in stroke research. Eur Stroke J. 2024;9(3):518–20. DOI: https://doi.org/10.1177/23969873241275863

Shool S, Adimi S, Saboori Amleshi R, Bitaraf E, Golpira R, Tara M. A systematic review of large language model evaluations in clinical medicine. BMC Med Inform Decis Mak. 2025;25(1):117. DOI: https://doi.org/10.1186/s12911-025-02954-4

Alfaraj A, Nagai T, AlQallaf H, Lin WS. Race to the moon or the bottom? Applications, performance, and ethical considerations of artificial intelligence in prosthodontics and implant dentistry. Dent J (Basel). 2024;13(1):13. DOI: https://doi.org/10.3390/dj13010013

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56. DOI: https://doi.org/10.1038/s41591-018-0300-7

Nakayama-Kamada C, Enatsu R, Fukumura S, Kuribara T, Ochi S, Mikuni N. A case of paroxysmal kinesigenic dyskinesia suspected to be reflex epilepsy. Nagoya J Med Sci. 2021;83(2):361–5.

Baber R. Treating menopausal women: have we lost our way? Aust N Z J Obstet Gynaecol. 2021;61(4):493–5. DOI: https://doi.org/10.1111/ajo.13381

Lambert B, Forbes F, Doyle S, Dehaene H, Dojat M. Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis. Artif Intell Med. 2024;150:102830. DOI: https://doi.org/10.1016/j.artmed.2024.102830

Zbrzezny AM, Grzybowski AE. Deceptive tricks in artificial intelligence: adversarial attacks in ophthalmology. J Clin Med. 2023;12(9):3266. DOI: https://doi.org/10.3390/jcm12093266

Sun Z, Lin M, Zhu Q, Xie Q, Wang F, Lu Z, et al. A scoping review on multimodal deep learning in biomedical images and texts. J Biomed Inform. 2023;146:104482. DOI: https://doi.org/10.1016/j.jbi.2023.104482

Warner E, Lee J, Hsu W, Syeda-Mahmood T, Kahn CE Jr, Gevaert O, Rao A. Multimodal machine learning in image-based and clinical biomedicine: survey and prospects. Int J Comput Vis. 2024;132(9):3753–69. DOI: https://doi.org/10.1007/s11263-024-02032-8

Kann BH, Hosny A, Aerts HJWL. Artificial intelligence for clinical oncology. Cancer Cell. 2021;39(7):916–27. DOI: https://doi.org/10.1016/j.ccell.2021.04.002

Kim SH, Wihl J, Schramm S, Berberich C, Rosenkranz E, Schmitzer L, et al. Human-AI collaboration in large language model-assisted brain MRI differential diagnosis: a usability study. Eur Radiol. 2025;35(9):5252–63. DOI: https://doi.org/10.1007/s00330-025-11484-6

Frazer HML, Peña-Solorzano CA, Kwok CF, Elliott MS, Chen Y, Wang C, et al. Comparison of AI-integrated pathways with human-AI interaction in population mammographic screening for breast cancer. Nat Commun. 2024;15(1):7525. DOI: https://doi.org/10.1038/s41467-024-51725-8

Downloads

Published

2025-10-24

How to Cite

Vadlapudi, V., & Kaladhar, D. S. V. G. K. (2025). Artificial intelligence in medical imaging: bridging innovation, ethics, and clinical impact. International Journal of Advances in Medicine, 12(6), 621–626. https://doi.org/10.18203/2349-3933.ijam20253360