Microalbuminuria as an early marker of left ventricular hypertrophy in type 2 diabetes mellitus

Authors

  • Balshine S. Kanwar Junior resident, Department of Medicine, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India http://orcid.org/0000-0003-4766-4325
  • Abhishek Gupta Associate professor, Department of Medicine, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
  • Sunil K. Virmani HOD & Professor, Department of Medicine, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India

DOI:

https://doi.org/10.18203/2349-3933.ijam20171477

Keywords:

Microalbuminuria, LVH, Type 2 diabetes mellitus, LV mass index, UACR

Abstract

Background: Microalbuminuria and left ventricular hypertrophy (LVH) have both been shown independently to be associated with increased cardiovascular (CVS) mortality in type 2 diabetes mellitus (DM) patients. This cross-sectional study was conducted to examine whether microalbuminuria is associated with LVH in non-hypertensive type 2 DM patients with early or no diabetic nephropathy.

Methods: 100 patients of type 2 DM were studied. Patients with Hypertension (BP >140/90 mm hg or on anti-hypertensive medication), history of coronary artery disease or valvular heart disease, estimated glomerular filtration rate (eGFR) < 60 ml/min/1.73 m2, known thyroid disease or active urinary tract infection (UTI) were excluded from the study. All patients were subjected to spot urine test for microalbuminuria by urinary albumin creatinine ratio (UACR), 12 lead ECG to detect LVH, 2D echocardiography to calculate LV mass index (LVMI), anthropometry, urine routine examination, kidney function test, fasting lipid profile and HbA1c.

Results: Of the 100 enrolled patients, 39 were found to have normoalbuminuria, 39 had microalbuminuria & 22 patients had macroalbuminuria. The correlation between increased albuminuria and LVMI was found to be statistically significant (P value < 0.001) and the LV mass significantly increased as albuminuria increased along the continuum of normoalbuminuria to macroalbuminuria. UACR showed a statistically significant correlation with age, eGFR, duration of diabetes (P value < 0.01) and HbA1c (P value < 0.05).

Conclusions: Microalbuminuria is associated with LVH in non-hypertensive type 2 DM patients and thus may serve as an early marker of LVH and help identify patients at high CVS risk.

Author Biography

Balshine S. Kanwar, Junior resident, Department of Medicine, Subharti Medical College, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India

 junior resident (3rd year, MD Medicine)

PG Dept of Medicine

Subharti medical college and hospital, Meerut

References

Morrish NJ, Stevens LK, Head J, Fuller JH, Jarrett RJ, Keen H. A prospective study of mortality among middle-aged diabetic patients (the London cohort of the WHO Multinational study of vascular disease in diabetics) I: Causes and death rates. Diabetologia. 1990;33:538-41.

Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, et al. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation. 2000;101:2271-6.

Vakili BA, Okin PM, Devereux RB. Prognostic implications of left ventricular hypertrophy. Am Heart J. 2001;141:334-41.

Cecil MP, Fajman WA, Ziffer JA, Frohlich ED. The heart in hypertension. N Engl J Med. 1993;328:212-3.

Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the framingham heart study. N Engl J Med. 1990;322:1561-6.

Dawson A, Morris AD, Struthers AD: The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia. 2005;48(10):1971-9.

Ochodnicky P, Henning RH, Dokkum RPE, Zeeuw D. Microalbuminuria and endothelial dysfunction: Emerging targets for primary prevention of end organ damage. J Cardiovasc Pharmacol. 2006;47:151-62.

American diabetes association. Standards of medical care in diabetes. Diabetes Care. 2005;28:4-36.

Buchner S, Debl K, Haimerl J, Djavidani B, Poschenrieder F, Feurbach S, et al. Electrocardiographic diagnosis of left ventricular hypertrophy: evaluation of ECG criteria by cardiovascular magnetic resonance. J Cardiovascular Magnetic Resonance. 2009;11:18-24.

Roberto LM, Luigi BP, Avi MV, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the american society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr. 2015;28:1-39.

WHO expert committee on physical status: the use and interpretation of anthropometry: report of a WHO expert committee 1995. Available at http://apps.who.int/iris/bitstream/10665/37003/1/WHO_TRS_854.pdf. Accessed on 10 March 2017.

Waist circumference and waist–hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008. Available at http:// apps.who.int/iris/ bitstream/10665/44583/1/9789241501491_eng.pdf. Accessed on 10 March 2017.

Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782-7.

Valmadrid CT, Klein R, Moss SE, Klein BE. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med. 2000;160:1093-100.

Gross JL, Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28:164-76.

Gall MA, Hougaard P, Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ. 1997;314:783-8.

Zeeuw D, Parving HH, Henning RH. Microalbuminuria as an early marker for cardiovascular disease. J Am Soc Nephrol. 2006;17(8):2100-5.

Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63:225-32.

Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356-60.

Dinneen SF, Gerstein HC. The association of microalbuminuria and mortality in non-insulin-dependent diabetes mellitus: A systematic overview of the literature. Arch Intern Med. 1997;157:1413-8.

Kannel WB, Stampfer MJ, Castelli WP, Verter J. The prognostic significance of proteinuria: The Framingham study. Am Heart J. 1984;108:1347-52.

Romundstad S, Holmen J, Kvenild K, Hallan H, Ellekjaer H. Microalbuminuria and all-cause mortality in 2,089 apparently healthy individuals: A 4.4-year follow-up study. The Nord-Trondelag Health Study (HUNT), Norway. Am J Kidney Dis. 2003;42:466-73.

Hillege HL, Fidler V, Diercks GF, Gilst WH, Zeeuw D, Veldhuisen DJ, et al. Prevention of renal and vascular end stage disease (PREVEND) study group: urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in the general population. Circulation. 2002;106:1777-82.

Jensen JS, Rasmussen B, Strandgaard S, Schroll M, Johnsen K. Arterial hypertension, micro-albuminuria, and risk of ischemic heart disease. Hypertension. 2000;35:898-903.

Zeeuw D, Remuzzi G, Parving HH, Keane WF, Zhang Z, Shahinfar S. Albuminuria, a therapeutic target for cardiovascular protection in type 2 diabetic patients with nephropathy. Circulation. 2004;110:921-7.

Orna JA, Herguedas E, Vano R, Arnal LM, Juliani B, Alonso FJ. Microalbuminuria presents the same vascular risk as overt CVD in type 2 diabetes. Diabetes Res Clin Pract. 2006;74:103-9.

Basi S, Fesler P, Mimran A, Lewis JB. Microalbuminuria in type 2 diabetes and hypertension. Diabetes Care. 2008;31(2):194-201.

Wu N, Zhao W, Ye K, Li Y, He M, Lu B. Albuminuria is associated with left ventricular hypertrophy in patients with early diabetic kidney disease. Int J Endocrinol. 2014;351945.

Gerstein HC, Mann JF, Pogue J, Dinneen SF, Hallé JP, Hoogwerf B. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the heart outcomes prevention evaluation study. The HOPE study investigators. Diabetes Care. 2000;23(2):35-9.

Nguyen MT, Cosson E, Valensi P, Poignard P, Nitenberg A, Pham I. Transthoracic echocardiographic abnormalities in asymptomatic diabetic patients: association with microalbuminuria and silent coronary artery disease. Diabetes Metab. 2011;37(4):343-50.

Liu JE, Robbins DC, Palmieri V, Bella JN, Roman MJ, Fabsitz R, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the strong heart study. J Am Coll Cardiol. 2003;41(11):2022-8.

Nobakhthaghighi N, Kamgar M, Bekheirnia MR, McFann K, Estacio R, Schrier RW. Relationship between urinary albumin excretion and left ventricular mass with mortality in patients with type 2 diabetes. Clin J Am Soc Nephrol. 2006;1(6):1187-90.

Wachtell K, Palmieri V, Olsen MH, Bella JN, Aalto T, Dahlof B. Urine albumin/creatinine ratio and echocardiographic left ventricular structure and function in hypertensive patients with electrocardiographic left ventricular hypertrophy: the LIFE study. losartan intervention for endpoint reduction. Am Heart J. 2002;143:319-26.

Eguchi K, Albala B, Jin Z, Rundek T, Sacco RL, Homma S, et al. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol. 2008;101(12):1787-91.

Sato A, Tarnow L, Nielsen FS, Knuden E, Parving HH: Left ventricular hypertrophy in normoalbuminuric type 2 diabtic patients not taking antihypertensive teartment. QJ Med. 2005;98:879-84.

Downloads

Published

2017-05-23

Issue

Section

Original Research Articles